Topics in Catalysis

, Volume 59, Issue 17–18, pp 1554–1563 | Cite as

Effect of Location and Distribution of Al Sites in ZSM-5 on the Formation of Cu-Oxo Clusters Active for Direct Conversion of Methane to Methanol

  • Monica A. C. Markovits
  • Andreas Jentys
  • Moniek Tromp
  • Maricruz Sanchez-Sanchez
  • Johannes A. Lercher
Original Paper

Abstract

A series of Cu/ZSM-5 materials were synthesized and tested for the selective oxidation of methane to methanol reaction in a three stage reaction. The efficiency of the catalysts is related to the ability of the zeolite framework to stabilize multinuclear Cu-oxo species, namely dicopper and tricopper oxo clusters. Spectroscopy characterization by EXAFS showed that the exchange with moderate Cu loadings led to preferential formation of trinuclear Cu complexes [Cu3(μ–O)3]2+ in HZSM-5. The concentration of Al pairs in ZSM-5 is found to limit the maximum concentration of multinuclear Cu-oxo species that can be formed. Above such maximum, inactive Cu species including Cu oxide nanoparticles are formed. Conversely, it was found that at low loadings the Cu speciation in Cu/ZSM-5 occurs as a mixture of Cu monomers and dimers. Furthermore, it was found that not only the structure of Cu-oxo clusters is relevant for the activation of methane, but also the local environment in which the cluster is embedded. Comparison of methane to Cu stoichiometries achieved for Cu/ZSM-5 and Cu/MOR systems containing the same type of active [Cu3(μ–O)3]2+ cluster shows that approximately 50 % of these clusters are inactive on ZSM-5. While MOR stabilizes the trinuclear clusters in highly constrained 8-MR side pockets, the possibility of ZSM-5 to stabilize part of these clusters in less constrained local environments might be the reason for a lower activity in methane oxidation.

Keywords

Cu/ZSM-5 Selective oxidation Methane Methanol Al pairs Zeolite Extraframework cations 

Supplementary material

11244_2016_676_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1301 kb)

References

  1. 1.
    Otsuka K, Wang Y (2001) Appl Catal A-Gen 222:145–161CrossRefGoogle Scholar
  2. 2.
    Periana RA, Taube DJ, Taube H, Evitt ER (1992) WO 92/14738Google Scholar
  3. 3.
    Michalkiewicz B, Kalucki K, Sośnicki JG (2003) J Catal 215:14–19CrossRefGoogle Scholar
  4. 4.
    Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Catal Today 110:303–309CrossRefGoogle Scholar
  5. 5.
    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395CrossRefGoogle Scholar
  6. 6.
    Groothaert MH, Lievens K, Leeman H, Weckhuysen BM, Schoonheydt RA (2003) J Catal 220:500–512CrossRefGoogle Scholar
  7. 7.
    Smeets PJ, Groothaert MH, Teeffelen RMV, Leeman H, Hensen EJM, Schoonheydt RA (2007) J Catal 245:358–368CrossRefGoogle Scholar
  8. 8.
    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci U S A 106:18908–18913CrossRefGoogle Scholar
  9. 9.
    Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2010) J Am Chem Soc 132:14736–14738CrossRefGoogle Scholar
  10. 10.
    Alayon EM, Nachtegaal M, Ranocchiari M, Bokhoven JAV (2012) Chem Commun 48:404–406CrossRefGoogle Scholar
  11. 11.
    Alayon EMC, Nachtegaal M, Bodi A, Bokhoven JAV (2014) ACS Catal 4:16–22CrossRefGoogle Scholar
  12. 12.
    Grundner S, Luo W, Sanchez-Sanchez M, Lercher JA (2016) Chem Commun 52:2553–2556CrossRefGoogle Scholar
  13. 13.
    Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546CrossRefGoogle Scholar
  14. 14.
    Beznis NV, Weckhuysen BM, Bitter JH (2010) Catal Lett 138:14–22CrossRefGoogle Scholar
  15. 15.
    Vanelderen P, Snyder BER, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) J Am Chem Soc 137(19):6383–6392CrossRefGoogle Scholar
  16. 16.
    Sobalik Z, Novakova J, Dedecek J, Sathu NK, Tabor E, Sazama P, Stastny P, Wichterlova B (2011) Micropor Mesopor Mat 146:172–183CrossRefGoogle Scholar
  17. 17.
    Dedecek J, Capek L, Sazama P, Sobalik Z, Wichterlova B (2011) Appl Cat A-Gen 391(1–2):244–253CrossRefGoogle Scholar
  18. 18.
    Dedecek J, Sobalik Z, Wichterlova B (2012) Catal Rev-Sci Eng 54:135–223CrossRefGoogle Scholar
  19. 19.
    Sobalik Z, Sazama P, Dedecek J, Wichterlova B (2014) Appl Catal A-Gen 474:178–185CrossRefGoogle Scholar
  20. 20.
    Dedecek J, Kaucky D, Wichterlova B, Gonsiorova O (2002) Phys Chem Chem Phys 4:5406–5413CrossRefGoogle Scholar
  21. 21.
    Dedecek J, Sklenak S, Li C, Wichterlova B, Gabova V, Brus J, Sierka M, Sauer J (2009) J Phys Chem C 113:1447–1458CrossRefGoogle Scholar
  22. 22.
    Sazama P, Dedecek J, Gabova V, Wichterlova B, Spoto G, Bordiga S (2008) J Catal 254:180–189CrossRefGoogle Scholar
  23. 23.
    Perea DE, Arslan I, Liu J, Ristanović Z, Kovarik L, Arey BW, Lercher JA, Bare SR, Weckhuysen BM (2015) Nat Commun 6:7589CrossRefGoogle Scholar
  24. 24.
    Han OH, Kim C-S, Hong SB (2002) Angew Chem Int Ed 41:469–472CrossRefGoogle Scholar
  25. 25.
    Lippens BC, Linsen BG, Boer JHD (1964) J Catal 3:32–37CrossRefGoogle Scholar
  26. 26.
    Harkins WD, Jura G (1944) J Am Chem Soc 66:1366–1373CrossRefGoogle Scholar
  27. 27.
    Newville M (2001) J Synchrotron Rad 8:322–324CrossRefGoogle Scholar
  28. 28.
    Ravel B, Newville M (2005) J Synchrotron Rad 12:537–541CrossRefGoogle Scholar
  29. 29.
    Brown GM, Chidambaram R (1973) Acta Cryst B 29:2393–2403CrossRefGoogle Scholar
  30. 30.
    Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Acta Cryst C 46:2279–2284CrossRefGoogle Scholar
  31. 31.
    Narsimhan K, Michaelis VK, Mathies G, Gunther WR, Griffin RG, Román-Leshkov Y (2015) J Am Chem Soc 137:1825–1832CrossRefGoogle Scholar
  32. 32.
    Sarkany J, d’Itri JL, Sachtler WMH (1992) Catal Lett 16:241–249CrossRefGoogle Scholar
  33. 33.
    Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) J Am Chem Soc 136:3522–3529CrossRefGoogle Scholar
  34. 34.
    Tromp M, Bokhoven JAV, Arink AM, Bitter JH, Koten GV, Koningsberger DC (2002) Chem Eur J 8:5667–5678CrossRefGoogle Scholar
  35. 35.
    Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA (2016) J Catal 338:305–312CrossRefGoogle Scholar
  36. 36.
    Lei GD, Adelman BJ, Sarkany J, Sachtler WMH (1995) Appl Catal B-Environ 5:245–256CrossRefGoogle Scholar
  37. 37.
    Costa PD, Moden B, Meitzner GD, Leeza DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601CrossRefGoogle Scholar
  38. 38.
    Gao F, Wang Y, Washton NM, Szanyi J, Peden CHF (2015) ACS Catal 5(11):6780–6791CrossRefGoogle Scholar
  39. 39.
    Mlinar AN, Baur GB, Bong GG, Getsoian AB, Bell AT (2012) J Catal 296:156–164CrossRefGoogle Scholar
  40. 40.
    Derouane EG (1998) J Mol Catal A-Chem 134(1–3):29–45CrossRefGoogle Scholar
  41. 41.
    Corma A (2003) J Catal 216:298–312CrossRefGoogle Scholar
  42. 42.
    Gounder R, Iglesia E (2009) J Am Chem Soc 131(5):1958–1971CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Monica A. C. Markovits
    • 1
  • Andreas Jentys
    • 1
  • Moniek Tromp
    • 2
  • Maricruz Sanchez-Sanchez
    • 1
  • Johannes A. Lercher
    • 1
  1. 1.Department of Chemistry and Catalysis Research CenterTechnische Universität MünchenGarchingGermany
  2. 2.Van’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations