Topics in Catalysis

, Volume 59, Issue 17–18, pp 1533–1544 | Cite as

Optimum Performance of Vanadyl Pyrophosphate Catalysts

  • G. MestlEmail author
  • D. Lesser
  • T. Turek
Original Paper


A scheme is proposed for the dynamic, catalytically active vanadium-phosphorus-mixed oxide surface of industrially used catalysts for the selective oxidation of n-butane to maleic anhydride. Surface species interconvert as function of operation conditions which leads to dynamic changes of the reactor performance on the time scale of hours to days if not controlled properly. This scheme is used as basis for a two-dimensional, heterogeneous reactor model describing the observed performance changes as function of the underlying phosphorus surface dynamics. The dynamic model comprises two reversible reactions: slow phosphorus adsorption, and water adsorption reaching its equilibrium faster. The formation rate of catalytically active species on the surface of vanadyl pyrophosphate is proportional to the actual number of inactive surface sites and the surface concentration of water being in agreement with literature mechanisms according to which water drives the vanadyl pyrophosphate system into a two-dimensional surface state facilitating the mobility of the three oxygen atoms necessary for the conversion of n-butane to MA. This activation process on the other hand is inhibited by a surplus of surface phosphorus increasingly destroying/blocking the sites. The kinetic model distinguishes explicitly between the intrinsic kinetics and phosphorus/water induced activity dynamics. In the presented study all phosphorus and water related processes appeared to be completely reversible, and the developed reactor model fully describes dynamic performance changes up to 400 h on stream. Irreversible long-term changes of catalyst performance, induced by e.g., bulk diffusion of phosphorus, or crystalline phase transitions, are not included in the model and hence need future investigation.


Vanadyl pyrophosphate Phosphorus Water Surface chemistry Reaction kinetics Dynamic reactor model 


  1. 1.
    PERP Report 07/08-8 Maleic Anhydride (MAN) (2009), Nexant, San FranciscoGoogle Scholar
  2. 2.
    Lohbeck K, Haferkorn H, Fuhrmann W, Fedtke N (2005) Ullmann´s encyclopedia industrial chemistry, 7th edn. Wiley-VCh, WeinheimGoogle Scholar
  3. 3.
    Burnett JC, Keppel RA, Robinson WD (1987) Commercial production of maleic anhydride by catalytic processes using fixed bed reactors. Catal Today 1:537–586CrossRefGoogle Scholar
  4. 4.
    Dente M, Pierucci S, Tronconi E, Cecchini M, Ghelfi F (2003) Selective oxidation of n-butane to maleic anhydride in fluid bed reactors: detailed kinetic investigation and reactor modeling. Chem Eng Sci 58:643–648CrossRefGoogle Scholar
  5. 5.
    Huang XF, Li CY, Chen BH, Silveston PL (2002) Transient kinetics of n-Butane oxidation to maleic anhydride over a VPO catalyst. Am Inst Chem Eng J 48:846–855CrossRefGoogle Scholar
  6. 6.
    Felthouse TR, Burnett JC, Horrell B, Mummey MJ, Kuo Y (2001) Maleic anhydride, maleic acid, and fumaric acid. Kirk-Othmer encyclopedia of chemical technology, vol 15. Wiley & Sons, New York, pp 1–49Google Scholar
  7. 7.
    Guliants VV, Carreon MA (2005) In: Catalysis Vol. 18, 1–45 Spivey JJ (ed), The Royal Society of Chemistry, CambridgeGoogle Scholar
  8. 8.
    Bartley JK, Dummer NF, Hutchings GJ (2009) Metal Oxide. In: Catalysis, Jackson SD, Hargreaves JSJ (eds) Vol. 2 Wiley-VCH Verlag, WeinheimGoogle Scholar
  9. 9.
    Wilkinson SK, Simmons MJH, Stitt EH, Baucherel X, Watson MJ (2013) A novel approach to understanding and modelling performance evolution of catalysts during their initial operation under reaction conditions—case study of vanadium phosphorus oxides for n-butane selective oxidation. J Catal 299:249–260CrossRefGoogle Scholar
  10. 10.
    Dummer NF, Bartley JK, Hutchings GJ (2011) Vanadium phosphate materials as selective oxidation catalysts. In: Gates BC, Knözinger H (eds) Adv Catal 54: 189–247 Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Centi G, Trifirò F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55–80CrossRefGoogle Scholar
  12. 12.
    Kubias B, Rodemerck U, Zanthoff HW, Meisel M (1996) Catal Today 32:243–253CrossRefGoogle Scholar
  13. 13.
    Brandstädter WM, Kraushaar-Czarnetzki B (2005) Ind Eng Chem Res 44:5550–5559CrossRefGoogle Scholar
  14. 14.
    Cheng M-J, Goddard WA III (2013) J Am Chem Soc 135:4600–4603CrossRefGoogle Scholar
  15. 15.
    Xue Z, Schrader GL (1999) In situ laser Raman spectroscopy studies of VPO catalyst transformations. J Phys Chem B 103:9459–9467CrossRefGoogle Scholar
  16. 16.
    Xue Z, Schrader GL (1999) Transient FTIR studies of the reaction pathway forn-butane selective oxidiation over vanadyl pyrophosphate. J Catal 184:87–104CrossRefGoogle Scholar
  17. 17.
    Hess S, Freund H, Liauw MA, Emig G (2001) Butane oxidation to maleic anhydride over a VPO catalyst following the riser regenerator approach. Stud Surf Sci Catal 133:205–210CrossRefGoogle Scholar
  18. 18.
    Uihlein K (1993) Butanoxidation an VPO-Wirbelschichtkatalysatoren, PhD Thesis, University, KarlsruheGoogle Scholar
  19. 19.
    Wang D, Barteau MA (2001) Kinetics of butane oxidation by a vanadyl pyrophosphate catalyst. J Catal 197:17–25CrossRefGoogle Scholar
  20. 20.
    Wang D, Barteau MA (2002) Oxidation kinetics of partially reduced vanadyl pyrophosphate catalyst. Appl Catal A Gen 223:205–214CrossRefGoogle Scholar
  21. 21.
    Bej SK, Rao MS (1992) Selective oxidation of n-butane to maleic anhydride. 4. Recycle reactor studies. Ind Eng Chem Res 31:2075–2076CrossRefGoogle Scholar
  22. 22.
    Buchanan JS, Sundaresan S (1986) Kinetics and redox properties of vanadium phosphate catalysts for butane oxidation. Appl Catal 26:211–226CrossRefGoogle Scholar
  23. 23.
    Brandstädter WM (2007) Partial oxidation of raffinate II and other mixtures of N-butane and N-butenes to maleic anhydride in a fixed-bed reactor; PhD Thesis, University KarlsruheGoogle Scholar
  24. 24.
    Sharma RK, Cresswell DL, Newson EJ (1991) Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride. Am Inst Chem Eng J 37:39–47CrossRefGoogle Scholar
  25. 25.
    Becker C (2002) Katalytische Wandreaktorkonzepte für MSA-Synthese und Methanol-Dampfreformierung, PhD Thesis Unversity StuttgartGoogle Scholar
  26. 26.
    Centi G, Fornaseri G, Trifiro F (1985) n-butane oxidation to maleic anhydride on vanadium-phosphorus oxides: kinetic analysis with a tubular flow stacked-pellet reactor. Ind Eng Chem Prod Res Dev 24:32–37CrossRefGoogle Scholar
  27. 27.
    Gascón J, Valenciano R, Téllez C, Herguido J, Menéndez M (2006) A generalized kinetic model for the partial oxidation of n-butane to maleic anhydride under aerobic and anaerobic conditions. Chem Eng Sci 61:6385–6394CrossRefGoogle Scholar
  28. 28.
    Schneider P, Emig G, Hofmann H (1987) Kinetic investigation and reactor simulation for the catalytic gas-phase oxidation of n-butane to maleic anhydride. Ind Eng Chem Res 26:2236–2241CrossRefGoogle Scholar
  29. 29.
    Contractor RM, Sleight AW (1988) Selective oxidation in riser reactor. Catal Today 3:175–184CrossRefGoogle Scholar
  30. 30.
    Lopez Granados M, Fierro JLG, Cavani F, Colombo A, Giuntoli F, Trifiro F (1998) Study by XPS and TPD of the interaction of n-pentane and n-butane with the surface of `non-equilibrated’ and `equilibrated’ V-P-O catalysts. Catal Today 40:251–261CrossRefGoogle Scholar
  31. 31.
    Cavani F, De Santi D, Luciani S, Löfberg A, Bordes-Richard E, Cortelli C, Leanza R (2010) Transient reactivity of vanadyl pyrophosphate, the catalyst for n-butane oxidation to maleic anhydride, in response to in situ treatments. Appl Catal A Gen 376:66–75CrossRefGoogle Scholar
  32. 32.
    Cavani F, Luciani S, Esposti ED, Cortelli C, Leanza R (2010) Surface dynamics of a vanadyl pyrophosphate catalyst for n-butane oxidation to maleic anhydride: an in situ raman and reactivity study of the effect of the P/V atomic ratio. Chem Eur J 16:1646–1655CrossRefGoogle Scholar
  33. 33.
    Arnold EW, Sundaresan S (1988) Effect of water vapor on the activity and selectivity characteristics of a vanadium phosphate catalyst towards butane oxidation. Appl Catal 41:225–239CrossRefGoogle Scholar
  34. 34.
    Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates. Science 275:191–193CrossRefGoogle Scholar
  35. 35.
    Lorences MJ, Patience GS, Díez FV, Coca J (2004) Transient n-butane partial oxidation kinetics over VPO. Appl Catal A Gen 263:193–202CrossRefGoogle Scholar
  36. 36.
    Contractor RM, Horowitz HS, Sisler GM, Bordes E (1997) The effects of steam on n-butane oxidation over VPO as studied in a riser reactor. Catal Today 37:51–57CrossRefGoogle Scholar
  37. 37.
    Rodemerck U, Kubias B, Zanthoff HW, Wolf GU, Baerns M (1997) The reaction mechanism of the selective oxidation of butane on (VO)2P2O7 catalysts: the influence of the valence state of vanadium. Appl Catal A Gen 153:217–231CrossRefGoogle Scholar
  38. 38.
    Rodemerck U, Kubias B, Zanthoff HW, Baerns M (1997) The reaction mechanism of the selective oxidation of butane on (VO)2P2O7 catalysts: the role of oxygen in the reaction chain to maleic anhydride. Appl Catal A Gen 153:203–216CrossRefGoogle Scholar
  39. 39.
    Abon PDM, Bere KE, Delichère P (1997) Nature of active oxygen in the n-butane selective oxidation over well-defined V-P-O catalysts: an oxygen isotopic labelling study. Catal Today 33:15–23CrossRefGoogle Scholar
  40. 40.
    Emberger N (2005) Zur Reaktionskinetik der Selektivoxidation von N-Butan an einem technischen (VO)2P2O7-Katalysator, PhD Thesis, Otto-von-Guericke-Universität MagdeburgGoogle Scholar
  41. 41.
    Thompson DJ, Fanning MO, Hodnett BK (2003) Modelling the active sites in vanadyl pyrophosphate. J Mol Catal A: Chem 198:125–137CrossRefGoogle Scholar
  42. 42.
    Guettel R, Turek T (2010) Assessment of micro-structured fixed-bed reactors for highly exothermic gas-phase reactions. Chem Eng Sci 65:1644–1654CrossRefGoogle Scholar
  43. 43.
    Becker M, Walden J (1986) Producing Maleic Anhydride, EP174173Google Scholar
  44. 44.
    Click GT, Barone BJ (1985) Steam regeneration of phosphorus treated vanadium-phosphorus-oxygen catalysts, US4515899Google Scholar
  45. 45.
    Edwards RC, Kilner PH, Udovich CA, Stauffenberg DL (1990) Reactivation of phosphorus vanadium catalysts and process for the manufacture of maleic anhydride catalysts treated with alkyl esters of orthophosphoric acids in the presence of water, EP0123467Google Scholar
  46. 46.
    Ebner JR (1993) Method for improving the performance of VPO Catalysts, WO 93/16027Google Scholar
  47. 47.
    Haddad MS, Goeden GV (2009) Phosphorus addition process for improvement of catalysts suitable for maleic anhydride production, US7629286Google Scholar
  48. 48.
    Bluhm H, Hävecker M, Kleimenov E, Knop-Gericke A, Liskowski A, Schlögl R, Su DS (2003) In situ surface analysis in selective oxidation catalysis: n-butane conversion over VPP. Top Catal 23:99–107CrossRefGoogle Scholar
  49. 49.
    Richter F, Papp H, Götze T, Wolf GU, Kubias B (1998) Investigation of the surface of vanadyl pyrophosphate catalysts. Surf Interface Anal 26:736–741CrossRefGoogle Scholar
  50. 50.
    Richter F, Papp H, Wolf GU, Götze T, Kubias B (1999) Study of the surface composition of vanadyl pyrophosphate catalysts by XPS and ISS – Influence of Cs+ and water vapor on the surface P/V ratio of (VO)2P2O7 catalysts. Fresenius J Anal Chem 365:150–153CrossRefGoogle Scholar
  51. 51.
    Zanthoff HW, Sananes-Schultz M, Buchholz SA, Rodemerck U, Kubias B, Baerns M (1998) On the active role of water during partial oxidation of n-butane to maleic anhydride over (VO)2P2O7 catalysts. Appl Catal A Gen 172:49–58CrossRefGoogle Scholar
  52. 52.
    Frey J, Lieder C, Schölkopf T, Schleid T, Nieken U, Klemm E, Hunger M (2010) Quantitative solid-state NMR investigation of V5+ species in VPO catalysts upon sequential selective oxidation of n-butane. J Catal 272:131–139CrossRefGoogle Scholar
  53. 53.
    Volta J (1996) Dynamic processes on vanadium phosphorous oxides for selective alkane oxidation. Catal Today 32:29–36CrossRefGoogle Scholar
  54. 54.
    Koyano G, Okuhara T, Misono M (1998) Structural changes of surface layer of vanadyl pyrophosphate catalysts by oxidation—reduction and their relationships with selective oxidation of n-butane. J Am Chem Soc 120:767–774CrossRefGoogle Scholar
  55. 55.
    Koyano G, Saito T, Misono M (2000) In situ vibrational spectroscopic investigation of surface redox process of vanadyl pyrophosphate. J Mol Catal A: Chem 155:31–41CrossRefGoogle Scholar
  56. 56.
    Wenig RW, Schrader GL (1987) In situ Fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a vanadium-phosphorus-oxide industrial catalyst. J Phys Chem 91:5674–5680CrossRefGoogle Scholar
  57. 57.
    Guliants VV, Benziger JB, Sundaresan S, Wachs IE, Jehng JM, Roberts E (1996) The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catal Today 28:275–295CrossRefGoogle Scholar
  58. 58.
    Okuhara T, Misono M (1993) Key reaction steps and active surface phase of vanadyl pyrophosphate for selective oxidation of butane. Catal Today 16:61–67CrossRefGoogle Scholar
  59. 59.
    Hannour FK, Martin A, Kubias B, Lücke B, Bordes E, Courtine P (1998) Vanadium phosphorus oxides with P/V = 2 used as oxidation and ammoxidation catalysts. Catal Today 40:263–286CrossRefGoogle Scholar
  60. 60.
    Moser TP, Wenig RW, Schrader GL (1987) Maleic anhydride conversion by V-P-O catalysts. Appl Catal 34:39–48CrossRefGoogle Scholar
  61. 61.
    Cornaglia LM, Lombardo EA (1995) XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts. Appl Catal A Gen 127:125–138CrossRefGoogle Scholar
  62. 62.
    Blanco RM, Shekari A, Carrazán SG, Bordes-Richard E, Patience GS, Ruiz P (2013) Significant catalytic recovery of spent industrial DuPont catalysts by surface deposition of an amorphous vanadium-phosphorus oxide phase. Catal Today 203:48–52CrossRefGoogle Scholar
  63. 63.
    Lesser D, Mestl G, Turek T (2016) Transient behavior of vanadyl pyrophosphate catalysts during the partial oxidation of n-butane in industrial-sized, fixed bed reactors. Appl Catal A Gen 510:1–10CrossRefGoogle Scholar
  64. 64.
    Lesser D, Mestl G, Turek T (2016) Chem Eng Sci (to be published) Google Scholar
  65. 65.
    Willinger MG (2005) Electronic Structure of Vanadium Phosphorus Oxides, PhD Thesis, Technical University, BerlinGoogle Scholar
  66. 66.
    Diedenhoven J, Reitzmann A, Mestl G, Turek T (2012) A model for the phosphorus dynamics of VPO catalysts during the selective oxidation of n-butane to maleic anhydride in a tubular reactor. Chem Ing Tech 84:517–523CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Clariant AGHeufeldGermany
  2. 2.Institut für Chemische und Elektrochemische VerfahrenstechnikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations