Topics in Catalysis

, Volume 59, Issue 17–18, pp 1489–1495 | Cite as

ADF-STEM Imaging of Nascent Phases and Extended Disorder Within the Mo–V–Nb–Te–O Catalyst System

  • T. Vogt
  • D. A. Blom
  • L. Jones
  • D. J. Buttrey
Original Paper


Materials investigated for their potential use as heterogeneous selective oxidation catalysts may sometimes show highly ordered regions at the nanoscale which are embedded within highly disordered matrices from which they nucleate. These are often referred to as X-ray amorphous due to the lack of higher-order Bragg reflections; however, here we use annular dark-field scanning transmission electron microscopy (ADF-STEM) real space imaging to characterize the local structure of nanometer size domains of compositionally and structurally complex nascent oxide phases present in multi-phase disordered solids. These images have been obtained using aberration-corrected scanning transmission electron microscopy and point to its potential for local structural characterization where the synthesis conditions for a particular phase are not optimized or where self-assembly to extended structures has been locally hindered. Such studies may lead to identification of new catalysts, provided their targeted synthesis can be scaled up.


ADF-STEM Selective oxidation Oxidative dehydrogenation 



T.V. and D.A.B. thank the VPR of the University of South Carolina for financial support of the JEOL 2100F facility. The research at Oxford University leading to results shown here has been funded by the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3) and EPSRC Grant Code, EP/K040375/1, for the ‘South of England Analytical Electron Microscope’.


  1. 1.
    Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 49:141–153CrossRefGoogle Scholar
  2. 2.
    Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Top Catal 21:79–88CrossRefGoogle Scholar
  3. 3.
    Brazdil JF (2006) Strategies for the selective oxidation of alkanes. Top Catal 38:289–294CrossRefGoogle Scholar
  4. 4.
    Millet JMM (2006) Mechanism of first hydrogen abstraction from light alkanes on oxide catalysts. Top Catal 38:83–92CrossRefGoogle Scholar
  5. 5.
    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Structural characterization of the orthorhombic M1 phase in MoVNbTeO propane oxidation catalyst. Top Catal 23:23–38CrossRefGoogle Scholar
  6. 6.
    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammoxidation catalysts. Z Krist 219:152–165Google Scholar
  7. 7.
    Sadakane M, Watanabe N, Katou T, Nodasaka Y, Ueda W (2007) Crystalline Mo3VOx mixed-metal oxide catalyst with trigonal symmetry. Angew Chem Int Ed 46:1493–1496CrossRefGoogle Scholar
  8. 8.
    Pyrz WD, Blom DA, Vogt T, Buttrey DJ (2008) Direct imaging of the MoVTeNbO M1 phase using an aberration-corrected high-resolution scanning transmission electron microscope. Angew Chem Int Ed 47:2788–2791CrossRefGoogle Scholar
  9. 9.
    Pyrz W, Blom DA, Shiju NR, Guliants VV, Vogt T, Buttrey DJ (2008) Using aberration-corrected STEM imaging to explore chemical and structural variations in the M1 phase of the MoVNbTe oxidation catalyst. J Phys Chem C 112:10043–10049CrossRefGoogle Scholar
  10. 10.
    Sadakane M, Yamagata K, Kodato K, Endo K, Toriumi K, Ozawa Y, Ozeki T, Nagai T, Matsui Y, Sakaguchi N, Pyrz WD, Buttrey DJ, Blom, DA, Vogt T, Ueda W (2009) Synthesis of orthorhombic Mo-V-Sb oxide species by assembly of pentagonal Mo6O21 polyoxometalate building blocks. Angew Chem Int Ed 48:3782–3786CrossRefGoogle Scholar
  11. 11.
    Pyrz WD, Blom DA, Shiju NR, Guilants VV, Vogt T, Buttrey DJ (2009) The effect of Nb or Ta substitution into the M1 phase of the MoV(NbTa)TeO selective oxidation catalyst. Catal Today 142:320–328CrossRefGoogle Scholar
  12. 12.
    He Q, Woo J, Belianinov A, Guliants VV, Borisevich AY (2015) Better catalysts through microscopy: mesoscale M1/M2 intergrowth in molybdenum-vanadium based complex oxide catalyst for propane ammoxidation. ACS Nano 9:3470–3478CrossRefGoogle Scholar
  13. 13.
    Woo J, Guliants VV (2016) QSTEM-based HAADF-STEM image analysis of Mo/V distribution in MoVTeTaO M1 phase and their correlations with surface reactivity. Appl Catal A: Gen 512:27–35CrossRefGoogle Scholar
  14. 14.
    Woo J, Borisevich AY, Kock C, Guliants VV (2015) Quantitative analysis of HAADF-STEM images of MoVTeTa M1 phase catalyst for propane ammoxidation to acrylonitrile. ChemCatChem 7:3731–3737CrossRefGoogle Scholar
  15. 15.
    Lunkenbein T, Girgdsies F, Wernbacher A, Noack J, Auffermann G, Yasuhara A, Klein-Hoffmann A, Ueda W, Eichelbaum M, Trunschke A, Schlögl R, Willinger MG (2015) Direct imaging of octahedral distortion in an complex molybdenum vanadium mixed oxide. Angew Chem Int Ed 54:6828–6831CrossRefGoogle Scholar
  16. 16.
    Heidelmann M, Barthel J, Cox G, Weirich TE (2014) Periodic cation segregation in Cs0.44[Nb2.54W2.46O14] quantified by high-resolution scanning transmission electron microscopy. Microsc Microanal 20:1453–1462CrossRefGoogle Scholar
  17. 17.
    Blom DA, Vogt T, Allard LF, Buttrey DJ (2014) Observation of sublattice disordering of the catalytic sites in a comple Mo–V–Nb–Te–O oxidation catalyst using high temperature STEM imaging. Top Catal 57:1138–1144CrossRefGoogle Scholar
  18. 18.
    Blom DA, Pyrz WD, Vogt T, Buttrey DJ (2009) Aberration-corrected STEM investigation of the M2 phase of MoVNbTeO complex oxidation catalyst. J Electron Microsc 58:193–198CrossRefGoogle Scholar
  19. 19.
    Pyrz WD, Blom DA, Sadakane M, Kodato K, Ueda W, Vogt T, Buttrey DJ (2010) Atomic-level imaging of Mo–V–O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM. Proc Natl Acad Sci 107:6152–6157CrossRefGoogle Scholar
  20. 20.
    Pyrz WD, Blom DA, Sadakane M, Kodato K, Ueda W, Vogt T, Buttrey DJ (2010) Atomic-scale investigation of two-component MoVO complex oxide catalysts using aberration-corrected high-angle annular dark-field imaging. Chem Mater 22:2033–2040CrossRefGoogle Scholar
  21. 21.
    Melzer D, Xu P, Hartmann D, Zhu Y, Browning ND, Sanchez-Sanchez M, Lercher JA (2016) Atomic-scale determination of active facets on the MoVTeNb oxide M1 phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation. Angew Chem Int Ed 55:8873–8877CrossRefGoogle Scholar
  22. 22.
    Jones L, Yang H, Pennycook TJ, Marshall MSJ, Van Aert S, Browning ND et al (2015) Smart Align—a new tool for robust non-rigid registration of scanning microscope data. Adv Struct Chem Imaging 1:8–30CrossRefGoogle Scholar
  23. 23.
    Walther T (2006) A new experimental procedure to quantify annular dark field images in scanning transmission electron microscopy. J Micr 221:137–144CrossRefGoogle Scholar
  24. 24.
    Wang ZW, Li ZY, Park SJ, Abdela A, Tang D, Palmer RE (2011) Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters. Phys Rev B 84:073408-1–073408-3Google Scholar
  25. 25.
    Li X, Buttrey DJ, Blom DA, Vogt T (2011) Improvement of the structural model for the M1 phase Mo–V–Nb–Te–O propane (Amm)oxidation catalyst. Top Catal 54:614–626CrossRefGoogle Scholar
  26. 26.
    Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (Amm)oxidation catalysts: from Bi–Mo–Ox to Mo–V–Nb–(Te, Sb)–Ox. Top Catal 23:5–22CrossRefGoogle Scholar
  27. 27.
    Grasselli RK, Lugmair CG, Volpe AF (2011) Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1 phase of the MoV(Nb, Ta)TeO system. Top Catal 54:595–604CrossRefGoogle Scholar
  28. 28.
    Grasselli RK, Volpe AF (2014) Catalytic consequences of a revised distribution of key elements at the active centers of the M1 phase of the MoVNbTeOx system. Top Catal 57:1124–1137CrossRefGoogle Scholar
  29. 29.
    Deniau B, Nguyen TT, Delichere P, Safonova O, Millet J-MM (2013) Redox state dynamics at the surface of MoVTe(Sb)NbO M1 phase in selective oxidation of light hydrocarbons. Top Catal 56:1952–1962CrossRefGoogle Scholar
  30. 30.
    Katou T, Vitry D, Ueda W (2004) Structure dependency of Mo–V–O-based complex oxide catalysts in the oxidations of hydrocarbons. Catal Today 91:237–240CrossRefGoogle Scholar
  31. 31.
    Konya T, Katou T, Murayama T, Ishikawa S, Sadakane M, Buttrey D, Ueda W (2013) An orthorhombic Mo3VOx catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides. Catal Sci Technol 3:380–387CrossRefGoogle Scholar
  32. 32.
    Ishenko EV, Anrushkevich TV, Popova GY, Kardash TY, Ishenko AV, Dovlitova LS, Cheslova YA (2014) The structure and catalytic properties of amorphous phase in MoVTeO catalysts for propane ammoxidation. Appl Catal A Gen 476:91–102CrossRefGoogle Scholar
  33. 33.
    Woo J, Sanghavi U, Vonderheide A, Guliants VV (2016) A study of M1/M2 phase synergy in the MoVTe(Nb, Ta)O catalysts for propane ammoxidation to acrylonitrile. Appl Catal A Gen 515:179–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. Vogt
    • 1
  • D. A. Blom
    • 2
  • L. Jones
    • 3
  • D. J. Buttrey
    • 4
  1. 1.NanoCenter and Department of Chemistry & BiochemistryUniversity of South Carolina ColumbiaUSA
  2. 2.NanoCenter and Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK
  4. 4.Center for Catalytic Science and Technology, Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations