Topics in Catalysis

, Volume 59, Issue 15–16, pp 1361–1370 | Cite as

CO Hydrogenation to Higher Alcohols over Cu–Co-Based Catalysts Derived from Hydrotalcite-Type Precursors

  • Johan Anton
  • Janine Nebel
  • Christoph Göbel
  • Thomas Gabrysch
  • Huiqing Song
  • Christian Froese
  • Holger Ruland
  • Martin Muhler
  • Stefan KaluzaEmail author
Original Paper


Cu–Co-based catalysts derived from hydrotalcite (HT)-type precursors were applied in higher alcohol synthesis (HAS) at 280 °C, 60 bar and a H2/CO ratio of 1/1. Catalysts with higher Cu/Co ratios were found to provide the best trade-off between selective alcohol formation and moderate Fischer–Tropsch synthesis (FTS) activity. Within the alcohols and hydrocarbons formed the productivities decreased exponentially with increasing chain length according to the ASF distribution indicating a chain growth mechanism. Thermal analysis revealed the presence of different bivalent cations in one single HT-type precursor phase. After calcination at lower temperatures (Tcalc < 600 °C) a carbonate-modified ZnAl2O4 matrix was obtained. Within this amorphous matrix Cu2+ and Co2+ were found to be partially embedded resulting in an impeded ion reduction. After HAS the presence of bulk Co2C was detected by XRD. Both close contact of Cu0 and Co0 as well as Co2C–Co0 interfaces are known to provide the mechanistic requirements for higher alcohol formation. For comparison HAS was performed over a physical mixture consisting of the Al-containing HTs of Cu, Co or Zn. For the simultaneously co-precipitated samples the major roles of Cu are to decrease the FTS activity of metallic Co and to lower the alcohol chain growth probability by intimate Cu0–Co0 interactions. With increasing Cu content the alcohol selectivities were found to increase at the expense of high conversion, with ethanol being the major oxygenate product for all HT-based catalysts.


Synthesis gas Higher alcohols Hydrotalcite Cobalt Carbide 


  1. 1.
    Tsai Y-T, Mo X, Campos A, Goodwin JG Jr, Spivey JJ (2011) Appl Catal A 396:91CrossRefGoogle Scholar
  2. 2.
    Nunan JG, Herman RG, Klier K (1989) J Catal 116:222CrossRefGoogle Scholar
  3. 3.
    Baker JE, Burch R, Golunski SE (1989) Appl Catal A 53:279CrossRefGoogle Scholar
  4. 4.
    Courty P, Durand D, Freund E, Sugier A (1982) J Mol Catal 17:241CrossRefGoogle Scholar
  5. 5.
    Marchi AJ, Di Cosimo JI, Apesteguía CR (1992) Catal Today 15:383CrossRefGoogle Scholar
  6. 6.
    Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Chem Mater 22:386CrossRefGoogle Scholar
  7. 7.
    Kühl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Chem Eur J 20:3782CrossRefGoogle Scholar
  8. 8.
    Zhu K, Liu C, Ye X, Wu Y (1998) Appl Catal A 168:365CrossRefGoogle Scholar
  9. 9.
    Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:43Google Scholar
  10. 10.
    Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G (2006) Appl Catal A 310:70CrossRefGoogle Scholar
  11. 11.
    Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, Turco M, Bagnasco G (2005) Solid State Ionics 176:2917CrossRefGoogle Scholar
  12. 12.
    Espinal R, Taboada E, Molins E, Chimentao RJ, Medina F, Llorca J (2012) RSC Adv 2:2946CrossRefGoogle Scholar
  13. 13.
    Ginés MJL, Amadeo N, Laborde M, Apesteguía CR (1995) Appl Catal A 131:283CrossRefGoogle Scholar
  14. 14.
    Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2008) Appl Catal A 337:48CrossRefGoogle Scholar
  15. 15.
    Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  16. 16.
    Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514CrossRefGoogle Scholar
  17. 17.
    Subramani V, Gangwal SK (2008) Energy Fuels 22:814CrossRefGoogle Scholar
  18. 18.
    Anton J, Ruland H, Kaluza S, Muhler M (2015) Catal Lett 145:1374CrossRefGoogle Scholar
  19. 19.
    Rives V, Dubey A, Kannan S (2001) Phys Chem Chem Phys 3:4826CrossRefGoogle Scholar
  20. 20.
    Alejandre A, Medina F, Rodriguez X, Salagre P, Sueiras JE (1999) J Catal 188:311CrossRefGoogle Scholar
  21. 21.
    Kannan S, Bevy LP (eds) (2006) Trends in catalysis research: hydrotalcites as potential catalysts for hydroxylation of phenol. Nova Science Publishers, New YorkGoogle Scholar
  22. 22.
    Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S (2001) J Mater Chem 11:2049CrossRefGoogle Scholar
  23. 23.
    Kannan S, Swamy CS (1992) J Mater Sci Lett 11:1585–1587CrossRefGoogle Scholar
  24. 24.
    Liu Q, Wang B, Wang C, Tian Z, Qu W, Ma H, Xu R (2014) Green Chem 16:2604CrossRefGoogle Scholar
  25. 25.
    Montanari T, Sisani M, Nocchetti M, Vivani R, Delgado MCH, Ramis G, Busca G, Costantino U (2010) Catal Today 152:104CrossRefGoogle Scholar
  26. 26.
    Alejandre A, Medina F, Salagre P, Correig X, Sueiras JE (1999) Chem Mater 11:939CrossRefGoogle Scholar
  27. 27.
    Lwin Y, Mohamad A, Yaakob Z, Daud W (2000) React Kinet Catal L 70:303–310CrossRefGoogle Scholar
  28. 28.
    Anton J, Nebel J, Song H, Froese C, Weide P, Ruland H, Muhler M, Kaluza S (2016) J Catal 335:175–186CrossRefGoogle Scholar
  29. 29.
    Günter MM, Ressler T, Jentoft RE, Bems B (2001) J Catal 203:133CrossRefGoogle Scholar
  30. 30.
    Naumann d’Alnoncourt R, Xia X, Strunk J, Löffler E, Hinrichsen O, Muhler M (2006) Phys Chem Chem Phys 8:1525Google Scholar
  31. 31.
    Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Angew Chem Int Ed 119:7465CrossRefGoogle Scholar
  32. 32.
    Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlögl R (2010) Chem Cat Chem 2:816Google Scholar
  33. 33.
    Volkova G, Yurieva T, Plyasova L, Naumova M, Zaikovskii V (2000) J Mol Catal A 158:389CrossRefGoogle Scholar
  34. 34.
    Pei Y-P, Liu J-X, Zhao Y-H, Ding Y-J, Liu T, Dong W-D, Zhu H-J, Su H-Y, Yan L, Li J-L, Li W-X (2015) ACS Catal 5:3620CrossRefGoogle Scholar
  35. 35.
    Xiaoding X, Scholten JJF, Mausbeck D (1992) Appl Catal A 82:91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Johan Anton
    • 1
  • Janine Nebel
    • 1
  • Christoph Göbel
    • 1
  • Thomas Gabrysch
    • 1
  • Huiqing Song
    • 1
  • Christian Froese
    • 1
  • Holger Ruland
    • 1
  • Martin Muhler
    • 1
    • 2
  • Stefan Kaluza
    • 1
    • 3
    Email author
  1. 1.Laboratory of Industrial ChemistryRuhr-University BochumBochumGermany
  2. 2.Max Planck Institute for Chemical Energy ConversionMülheim an der RuhrGermany
  3. 3.Fraunhofer UMSICHTOberhausenGermany

Personalised recommendations