Skip to main content
Log in

Comparative Analysis of Reactant and Product Adsorption Energies in the Selective Oxidative Coupling of Alcohols to Esters on Au(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Gold-based heterogeneous catalysts have attracted significant attention due to their selective partial oxidation capabilities, providing promising alternatives for the traditional industrial homogeneous catalysts. In the current study, the energetics of adsorption/desorption of alcohols (CH3OH/methanol, CH3CH2OH/ethanol, CH3CH2CH2OH/n-propanol) and esters (HCOOCH3/methyl formate, CH3COOCH3/methyl acetate, and CH3COOCH2CH3/ethyl acetate) on a planar Au(111) surface was investigated in conjunction with oxidative coupling reactions by means of temperature programmed desorption (TPD) and dispersion-corrected density functional theory (DFT) calculations. The results reveal a complex interplay between inter-molecular and surface-molecule interactions, both mediated by weak van der Waals forces, which dictates their relative stability on the gold surface. Both experimental and theoretical adsorption/desorption energies of the investigated esters are lower than those of the alcohols from which they originate through oxidative coupling reactions. This result can be interpreted as an important indication in favor of the selectivity of Au surfaces in alcohol oxidative coupling/partial oxidation reactions, allowing facile removal of partial oxidation products immediately after their generation preventing their complete oxidation to higher oxygenates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Forouzani M, Mardani HR, Ziari M, Malekzadeh A, Biparva P (2015) Chem Eng J 275:220

    Article  CAS  Google Scholar 

  2. Ahn SH, Liu Y, Moffat TP (2015) ACS Catal 5:2124–2136

    Article  CAS  Google Scholar 

  3. Wang R, Wu Z, Wang G, Qin Z, Chen C, Dong M, Zhu H, Fan W, Wang J (2015) RSC Adv 5:44835–44839

    Article  CAS  Google Scholar 

  4. Kannan R, Silva AA, Cardoso FM, Gupta G, Aslam Z, Sharma S, Steinberger Wilckens R (2015) RSC Adv 5:36993–36998

    Article  CAS  Google Scholar 

  5. Garcia G, Stoffelsma C, Rodriguez P, Koper MTM (2015) Surf Sci 631:267–271

    Article  CAS  Google Scholar 

  6. Xie R, Chen M, Wang J, Mei S, Pan Y, Gu H (2015) RSC Adv 5:650–653

    Article  CAS  Google Scholar 

  7. Hao Y, Yang Y, Hong L, Yuan J, Niu L, Gui Y (2014) ACS Appl Mater Interfaces 6:21986–21994

    Article  CAS  Google Scholar 

  8. Abdelouahab-Reddam Z, Mail RE, Coloma F, Sepulveda-Escribano A (2015) Catal Today 249:109–116

    Article  CAS  Google Scholar 

  9. Asgardi J, Calderon JC, Alcaide F, Querejeta A, Calvillo L, Lazaro MJ, Garcia G, Pastor E (2015) Appl Catal B 168–169:33–41

    Article  Google Scholar 

  10. Gong J, Mullins CB (2008) J Am Chem Soc 130:16458–16459

    Article  CAS  Google Scholar 

  11. Boronat M, Leyva-Perez A, Corma A (2014) Acc Chem Res 47:834–844

    Article  CAS  Google Scholar 

  12. Liu X, He L, Liu Y-M (2014) and Y. Cao Acc Chem Res 47:793–804

    Article  CAS  Google Scholar 

  13. Wittstock A, Baumer M (2014) Acc Chem Res 47:731–739

    Article  CAS  Google Scholar 

  14. Xu B, Liu X, Haubrich J, Madix R, Friend CM (2009) Angew Chem Int Ed 48:4206–4209

    Article  CAS  Google Scholar 

  15. Haruta M (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  16. Liu X, Xu B, Haubrich J, Madix RJ, Friend CM (2009) J Am Chem Soc 131:5757–5759

    Article  CAS  Google Scholar 

  17. Liu X, Friend CM (2010) Langmuir 26:16552–16557

    Article  CAS  Google Scholar 

  18. Bobuatong K, Karanjit S, Fukuda R, Ehara M, Sakurai H (2012) Phys Chem Chem Phys 14:3103–3111

    Article  CAS  Google Scholar 

  19. Wang H, Wang C, Yan H, Yi H, Lu J (2015) J Catal 324:59–68

    Article  CAS  Google Scholar 

  20. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319–322

    Article  CAS  Google Scholar 

  21. Karatok M, Vovk EI, Shah AA, Turksoy A, Ozensoy E (2015) Surf Sci 641:289–293

    Article  CAS  Google Scholar 

  22. Outka DA, Madix RJ (1987) J Am Chem Soc 109:1708–1714

    Article  CAS  Google Scholar 

  23. Lazaga MA, Wickham DT, Parker DH, Kastanas GN, Koel BE (1993) ACS Symp Ser 523:90–109

    Article  CAS  Google Scholar 

  24. Outka DA, Madix RJ (1987) Surf Sci 179:361–376

    Article  CAS  Google Scholar 

  25. Madix RJ, Friend CM, Liu XY (2008) J Catal 258:410–413

    Article  CAS  Google Scholar 

  26. Syomin D, Koel BE (2002) Surf Sci 498:53–60

    Article  CAS  Google Scholar 

  27. Pan M, Flaherty DW, Mullins CB (2011) J Phys Chem Lett 2:1363–1367

    Article  CAS  Google Scholar 

  28. Davis KA, Goodman DW (2000) J Phys Chem B 104:8557–8562

    Article  CAS  Google Scholar 

  29. Chesters MA, Somorjai GA (1975) Surf Sci 52:21–28

    Article  CAS  Google Scholar 

  30. Carrasco J, Liu W, Michaelides A, Tkatchenko A (2014) J Chem Phys 140:084704

    Article  Google Scholar 

  31. Lee K, Morikawa Y, Langreth DC (2010) Phys Rev B 82:155461

    Article  Google Scholar 

  32. Buimaga-Iarinca L, Morari C (2014) Theoret Chem Acc 133:1502

    Article  Google Scholar 

  33. Bedolla PO, Feldbauer G, Wolloch M, Eder SJ, Drr N, Mohn P, Redinger J, Vernes A (2014) J Phys Chem C 118:17608–17615

    Article  CAS  Google Scholar 

  34. Fajn J, Teixeira F, Gomes J, Cordeiro M (2015) Theor Chem Acc 134:67

    Article  Google Scholar 

  35. Rodriguez-Reyes JCF, Siler CGF, Liu W, Tkatchenko A, Friend CM, Madix RJ (2014) J Am Chem Soc 136(13333–13340):19

    Google Scholar 

  36. Verwüster E, Hofmann OT, Egger DA, Zojer E (2015) J Phys Chem C 119:7817–7825

    Article  Google Scholar 

  37. Wetterer SM, Lavrich DJ, Cummings T, Bernasek SL, Scoles G (1998) J Phys Chem B 102(46):9266–9275

    Article  CAS  Google Scholar 

  38. Baxter RJ, Teobaldi G, Zerbetto F (2003) Langmuir 19:7335–7340

    Article  CAS  Google Scholar 

  39. Garcia-Muelas R, Lopez N (2014) J Phys Chem C 118:17531–17537

    Article  CAS  Google Scholar 

  40. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  41. Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  42. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys: Condens Matter 21:395502

    Google Scholar 

  43. Roman-Perez G, Soler J (2009) Phys Rev Lett 103:096102

    Article  Google Scholar 

  44. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  45. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Phys Rev Lett 82:3296–3299

    Article  CAS  Google Scholar 

  46. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 17b, September 2015, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/

  47. Broyden CG (1970) J Inst Math Appl 6:76–90

    Article  Google Scholar 

  48. Fletcher R (1970) Computer Journal 13:317–322

    Article  Google Scholar 

  49. Goldfarb D (1970) Mathematics of Computation 24:23–26

    Article  Google Scholar 

  50. Shanno DF (1970) Math Comput 24:647–656

    Article  Google Scholar 

  51. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J and D. J. Fox (2009), Gaussian Inc, Wallingford CT

  52. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  54. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  55. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  56. Sayin CS, Toffoli D, Ustunel H (2015) Appl Surf Sci 351:344–352

    Article  CAS  Google Scholar 

  57. Wang L, He C, Zhang W, Li Z, Yang J (2014) J Phys Chem C 118:17511–17520

    Article  CAS  Google Scholar 

  58. Chang C-R, Yang X-F, Long B, Li J (2013) ACS Catal 3:1693–1699

    Article  CAS  Google Scholar 

  59. Xu B, Haubrich J, Baker TA, Kaxiras E, Friend CM (2011) J Phys Chem C 115:3703–3708

    Article  CAS  Google Scholar 

  60. Liu S, Jin P, Zhang D, Hao C, Yang X (2013) Appl Surf Sci 265:443–451

    Article  CAS  Google Scholar 

  61. Meng Q, Shena Y, Xu J, Ma X, Gong J (2012) Surf Sci 606:1608–1617

    Article  CAS  Google Scholar 

  62. Fartaria RPS, Freitas FFM, Silva FMS (2007) Fernandes. Int J Quantum Chem 107:2169–2177

    Article  CAS  Google Scholar 

  63. Gong J, Flaherty DW, Ojifinni RA, White JM, Mullins CB (2008) Chem Phys Chem 112:5501–5509

    CAS  Google Scholar 

  64. Gong J, Flaherty DW, Yan T, Mullins CB (2008) Chem Phys Chem 9:2461–2466

    CAS  Google Scholar 

  65. Redhead PA (1962) Vacuum 12:203–211

    Article  CAS  Google Scholar 

  66. Niemantsverdriet, J.W. Spectroscopy in Catalysis: An Introduction, Third Edition, Wiley-VCH; (July 23, 2007)

  67. Kokalj T (2011) Phys Rev B 84:045418

    Article  Google Scholar 

  68. Fernandez-Torre D, Kupiainen O, Pyykko P, Halonen L (2009) Chem Phys Lett 471:239–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. V., M. K., A. A. S. and E. O. acknowledge financial support from the Scientific and Technological Research Council of Turkey (TÜBİTAK, Program Code: 2221 and Grant No: 112T589). H. U. and D. T. gratefully acknowledge the support by TÜBITAK Grant No. 113F099 in addition to the computational resources provided by the National Center of Academic Network and Information (TÜBITAK ULAKBIM) and the National Center for High Performance Computing (UHEM) Grant No. 5003342014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hande Ustunel or Daniele Toffoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenozan, S., Ustunel, H., Karatok, M. et al. Comparative Analysis of Reactant and Product Adsorption Energies in the Selective Oxidative Coupling of Alcohols to Esters on Au(111). Top Catal 59, 1383–1393 (2016). https://doi.org/10.1007/s11244-016-0660-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0660-5

Keywords

Navigation