Topics in Catalysis

, Volume 60, Issue 3–5, pp 374–380 | Cite as

Influencing Parameters on the Microwave-Based Soot Load Determination of Diesel Particulate Filters

  • Markus Feulner
  • Florian Seufert
  • Andreas Müller
  • Gunter Hagen
  • Ralf Moos
Original Paper

Abstract

Diesel Particulate Filters (DPF) are an essential part of today’s diesel exhaust gas aftertreatment systems. For an effective filter regeneration strategy, the precise knowledge of the actual trapped soot mass is essential. Besides the state-of-the-art technology of determining the soot load via pressure drop and/or model-based, a microwave-based method enables direct and in situ soot load detection. Thereby, an electric field is impressed into the filter housing and the power transmission is measured, which correlates with the soot load. In this study, influencing parameters, especially temperature and humidity, are examined and compared to the sensitivity towards soot accumulation. Measurements were conducted in a laboratory test bench with a filter-core, which had been previously loaded with soot in an engine dynamometer. While humidity does not have a notable effect, the influence of temperature needs to be considered for real world application. Finally, a complete filter regeneration of the DPF-core in the laboratory test bench could be monitored with the microwave-based system. The carbon balance-derived burned soot mass coincides very well with the microwave derived transmission parameter.

Keywords

Diesel particulate filter (DPF) On-board diagnostics Exhaust gas aftertreatment Microwave Cavity perturbation 

References

  1. 1.
    Kato K, Thier D, Kattouah P, Ohara E, Vogt CD, Ito Y, Aoki T, Shimoda T, Yuuki K, Sakamoto H (2014) Advanced catalyzed gasoline particulate filter to fulfill future emission targets. In: Proceedings of the 18th ETH-conference on combustion generated nanoparticles, Zürich, 22–25 June 2014Google Scholar
  2. 2.
    Twigg M, Phillips P (2009) Cleaning the air we breathe—controlling diesel particulate emissions from passenger cars. Platin Metals Rev 53:27–34. doi:10.1595/147106709x390977 CrossRefGoogle Scholar
  3. 3.
    Masoudi M, Sappok A (2014) Soot (PM) Sensors. DieselNet Technology Guide. http://www.dieselnet.com/tech/dpf_soot_sensors.php. Accessed on 07 Aug 2014
  4. 4.
    Rose D, Boger T (2009) Different approaches to soot estimation as key requirements for DPF applications. SAE paper 2009-01-1262 2009. doi: 10.4271/2009-01-1262
  5. 5.
  6. 6.
    Hansson J, Ingeström V (2012) A method for estimating soot load in a DPF using an RF-based sensor. Master thesis, Linköpings Universitet, Linköping, 2012. ISRN: LiTH-ISY-EX—12/4584–SEGoogle Scholar
  7. 7.
    Sappok A, Bromberg L (2010) Loading and regeneration analysis of a diesel particulate filter with a radio frequency-based sensor. SAE paper 2010-01-2126 2010. doi: 10.4271/2010-01-2126
  8. 8.
    Feulner M, Hagen G, Piontkowski A, Müller A, Fischerauer G, Brüggemann D, Moos R (2013) In-operation monitoring of the soot load of diesel particulate filters—initial tests. Top Catal 56:358–364. doi:10.1007/s11244-013-0002-9 CrossRefGoogle Scholar
  9. 9.
    Fischerauer G, Förster M, Moos R (2010) Sensing the soot load in automotive diesel particulate filters by microwave methods. Meas Sci Technol 21:035108. doi:10.1088/0957-0233/21/3/035108 CrossRefGoogle Scholar
  10. 10.
    Fischerauer G, Spörl M, Gollwitzer A, Wedemann M, Moos R (2008) Catalyst state observation via the perturbation of a microwave cavity resonator. Frequenz 62:180–184. doi:10.1515/FREQ.2008.62.7-8.180 CrossRefGoogle Scholar
  11. 11.
    Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method. Chem Eng Technol 34:791–796. doi:10.1002/ceat.201000546 CrossRefGoogle Scholar
  12. 12.
    Rauch D, Kubinski D, Simon U, Moos R (2014) Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sens Actuators B 205:88–93. doi:10.1016/j.snb.2014.08.019 CrossRefGoogle Scholar
  13. 13.
    Reiß S, Spörl M, Hagen G, Fischerauer G, Moos R (2011) Combination of wirebound and microwave measurements for in situ characterization of automotive three-way catalysts. IEEE Sens J 11:434–438. doi:10.1109/JSEN.2010.2058798 CrossRefGoogle Scholar
  14. 14.
    Fremerey P, Reiß S, Geupel A, Fischerauer G, Moos R (2011) Determination of the NOx loading of an automotive lean Nox trap by directly monitoring the electrical properties of the catalyst material itself. Sensors 11:8261–8280. doi:10.3390/s110908261 CrossRefGoogle Scholar
  15. 15.
    Moos R (2015) Microwave-based catalyst state diagnosis—state of the art and future perspective. SAE Int J Engines 8:1240–1245. doi:10.4271/2015-01-1042 also SAE paper 2015-01-1042 (2015) CrossRefGoogle Scholar
  16. 16.
    Moos R, Beulertz G, Reiß S, Hagen G, Fischerauer G, Votsmeier M, Gieshoff J (2013) Overview: status of the microwave-based automotive catalyst state diagnosis. Top Catal 56:483–488. doi:10.1007/s11244-013-9980-x CrossRefGoogle Scholar
  17. 17.
    Rauch D, Fremerey P, Jess A, Moos R (2013) In situ detection of coke deposits on fixed-bed catalysts by a radio frequency-based method. Sens Actuators B 181:681–689. doi:10.1016/j.snb.2013.01.022 CrossRefGoogle Scholar
  18. 18.
    Feulner M, Müller A, Hagen G, Brüggemann D, Moos R (2013) Microwave-based diesel particulate filter monitoring—soot load determination and influencing parameters, sensor. In: Proceedings of the 16th international conference on sensors and measurement science. doi: 10.5162/sensor2013/P4.1
  19. 19.
    Feulner M, Stöber R, Fischerauer G, Moos R (2014) How the humidity affects the microwave based soot load determination of a DPF. In: Proceedings of the 18th ETH-conference on combustion generated nanoparticles, ETH Zürich, 22–25 June 2014Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Markus Feulner
    • 1
  • Florian Seufert
    • 1
  • Andreas Müller
    • 1
  • Gunter Hagen
    • 1
  • Ralf Moos
    • 1
  1. 1.Department of Functional Materials, Bayreuth Engine Research Center (BERC), Zentrum für Energietechnik (ZET)University of BayreuthBayreuthGermany

Personalised recommendations