Topics in Catalysis

, Volume 60, Issue 3–5, pp 312–317 | Cite as

Sensor Tool for Fast Catalyst Material Characterization

OriginalPaper
  • 95 Downloads

Abstract

For the development of catalyst materials a novel sensor tool is presented. It can determine catalyst light-off temperatures. The device measures temperature changes (exothermicities) due to catalytic reactions of the material which is coated on a very small catalyst coating area directly on the sensor device. By temperature modulation via an integrated heater, light-off temperature characteristics can be determined within a few minutes. In the present contribution, the sensor setup is introduced and several experimental results for an exemplarily investigated Pt-loaded Al2O3 catalyst are shown with typical exhaust gas components and with mixtures of their components in a lean base gas atmosphere. Several typical findings are light-off hysteresis, CO poisoning, alkane light-off-behavior or acetylene poisoning.

Keywords

Thermoelectric LTCC sensor On-board diagnostics (OBD) Diesel oxidation catalyst (DOC) Three way catalyst (TWC) Exothermicity sensor Temperature programmed desorption (TPD) 

References

  1. 1.
    Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50. doi:10.1016/S0920-5861(00)00407-7 CrossRefGoogle Scholar
  2. 2.
    Heck R, Farrauto R (2001) Automobile exhaust catalysts. Appl Catal A 221:443–457. doi:10.1016/S0926-860X(01)00818-3 CrossRefGoogle Scholar
  3. 3.
    Herreros JM, Gill SS, Lefort I, Tsolakis A, Millington P, Moss E (2014) Enhancing the low temperature oxidation performance over a Pt and a Pt–Pd diesel oxidation catalyst. Appl Catal B 147:835–841. doi:10.1016/j.apcatb.2013.10.013 CrossRefGoogle Scholar
  4. 4.
    Tsinoglou D, Koltsakis G, Samaras Z (2002) Evaluation of on-board diagnosis methods for three-way catalytic converters. Environ Sci Technol 23:5270–5278. doi:10.1021/es010269y CrossRefGoogle Scholar
  5. 5.
    Wiegärtner S, Hagen G, Kita J, Schönauer-Kamin D, Reitmeier W, Hien M, Grass P, Moos R (2015) Thermoelectric hydrocarbon sensor in thick-film technology for on-board-diagnostics of a diesel oxidation catalyst. Sens Actua B Chem 214:234–240. doi:10.1016/j.snb.2015.02.083 CrossRefGoogle Scholar
  6. 6.
    Kohler H, Röber J, Link N, Bouzid I (1999) New application of tin oxide gas sensors I. Molecular identification by cyclic variation of the working temperature and numerical analysis of the signals. Sens Actua B Chem 61:163–169. doi:10.1016/s0925-4005(99)00286-5 CrossRefGoogle Scholar
  7. 7.
    Gramm A, Schütze A (2003) High performance vapor identification with a two sensor array using temperature cycling and pattern classification. Sens Actua B Chem 95:58–65. doi:10.1016/s0925-4005(03)00404-0 CrossRefGoogle Scholar
  8. 8.
    Kita J, Engelbrecht A, Schubert F, Groß A, Rettig F, Moos R (2015) Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sens Actua B Chem 213:541–546. doi:10.1016/j.snb.2015.01.041 CrossRefGoogle Scholar
  9. 9.
    Burns GW, Strouse GF, Liu BM, Mangum BW (1992) Gold versus platinum thermocouples: performance data and an ITS-90 based reference function. Temp Meas Control Sci Ind 5:531–536Google Scholar
  10. 10.
    Beulertz G, Votsmeier M, Moos R (2015) Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: a microwave cavity perturbation study. Appl Catal B 165:369–377. doi:10.1016/j.apcatb.2014.09.068 CrossRefGoogle Scholar
  11. 11.
    Koutoufaris I, Koltsakis G (2014) Heat-and mass-transfer induced hysteresis effects during catalyst light-off testing. Can J Chem Eng 92:1561–1569. doi:10.1002/cjce.22011 CrossRefGoogle Scholar
  12. 12.
    Etheridge JE, Watling TC (2015) Is reactor light-off data sufficiently discriminating between kinetic parameters to be used for developing kinetic models of automotive exhaust aftertreatment catalysts? the effect of hysteresis induced by strong self inhibition. Chem Eng J 264:376–388. doi:10.1016/j.cej.2014.11.089 CrossRefGoogle Scholar
  13. 13.
    Bowker M (2008) Automotive catalysis studied by surface science. Chem Soc Rev 37:2204–2211. doi:10.1039/B719206C CrossRefGoogle Scholar
  14. 14.
    Nishibori M, Shin W, Tajima K, Houlet L, Izu N, Itoh T, Tsubota S, Matsubara I (2007) Thermoelectric gas sensor using au loaded titania CO oxidation catalyst. J Ceram Soc Jpn 115:37–41. doi:10.2109/jcersj.115.37 CrossRefGoogle Scholar
  15. 15.
    Moos R, Wedemann M, Spörl M, Reiß S, Fischerauer G (2009) Direct catalyst monitoring by electrical means: an overview on promising novel principles. Top Catal 52:2035–2040. doi:10.1007/s11244-009-9399-6 CrossRefGoogle Scholar
  16. 16.
    Reiß S, Wedemann M, Moos R, Rösch M (2009) Electrical in-situ characterization of three-way catalyst coatings. Top Catal 52:1898–1902. doi:10.1007/s11244-009-9366-2 CrossRefGoogle Scholar
  17. 17.
    Moos R (2010) Catalysts as sensors—a promising novel approach in automotive exhaust gas aftertreatment. Sensors 10:6773–6787. doi:10.3390/s100706773 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Bayreuth Engine Research Center (BERC), Department of Functional MaterialsUniversity of BayreuthBayreuthGermany

Personalised recommendations