Topics in Catalysis

, Volume 60, Issue 3–5, pp 295–299 | Cite as

CH4 Dissociation Mechanisms on Aged Three-Way Natural Gas Vehicle Pd/Al2O3 Catalyst

  • F. Dhainaut
  • A. C. van Veen
  • S. Pietrzyk
  • P. Granger
Original Paper


This paper deals with the kinetics of CH4 dissociation on a model Pd/Al2O3 catalyst. The adsorption and conversion of CH4 over reduced or oxidized catalysts were studied by applying a temporal analysis of products (TAP) reactor. The experiments are discussed in the light of a selected mechanism involving CH4 decomposition into carbon and hydrogen that cannot be simplified to a global reaction because of the importance of CH2 ad-species. This mechanism was modified for oxidized catalysts including steps for the formation of water involving the recombination of two neighbor OHads species. TAP experiments over the oxidized catalyst confirm the involvement of the metal/support interface, with a spill-over effect previously characterized on the reduced catalyst. Optimized kinetics parameters were compared to theoretical values showing a relatively good agreement.


TAP measurements Methane activation Palladium NGV catalysts 


  1. 1.
    EU Project—BRPR960213 (1999) Use of natural gas in passenger cars—components for bifuel vehicles and concepts to handle varying gas compositionsGoogle Scholar
  2. 2.
    Klingstedt F, Neyestanaki AK, Byggningsbacka R, Lindfors LE, Lundén M, Petersson M, Tengström P, Ollonqvist T, Väyrynen J (2001) Appl Catal A 209:301–316CrossRefGoogle Scholar
  3. 3.
    Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227–237CrossRefGoogle Scholar
  4. 4.
    Renème Y, Dhainaut F, Granger P (2009) Top Catal 52:2007–2012CrossRefGoogle Scholar
  5. 5.
    Renème Y, Dhainaut F, Pietrzyk S, Chaar M, Van Veen AC, Granger P (2012) App Catal B 126:239–248CrossRefGoogle Scholar
  6. 6.
    Renème Y, Dhainaut F, Frère M, Gengembre L, Granger P, Dujardin C, De Cola P (2010) Surf Interface Anal 42:530–535CrossRefGoogle Scholar
  7. 7.
    Dhainaut F, Reneme Y, Pietrzik S, Schuurman Y, Mirodatos C, Granger P (2013) Top Catal 56:279–286CrossRefGoogle Scholar
  8. 8.
    Renème Y, Dhainaut F, Schuurman Y, Mirodatos C, Granger P (2014) App Catal B 160–161:390–399CrossRefGoogle Scholar
  9. 9.
    Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119CrossRefGoogle Scholar
  10. 10.
    O’Connor AM, Schuurman Y, Ross JRH, Mirodatos C (2006) Catal Today 115:191–198CrossRefGoogle Scholar
  11. 11.
    Buyevskaya OV, Wolf D, Baerns M (1994) Catal Lett 29:249–260CrossRefGoogle Scholar
  12. 12.
    Burch R, Urbano F, Loader P (1995) Appl Catal A 123:173–184CrossRefGoogle Scholar
  13. 13.
    Burch R, Loader P, Urbano F (1996) Catal Today 27:243–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Dhainaut
    • 1
  • A. C. van Veen
    • 2
  • S. Pietrzyk
    • 1
  • P. Granger
    • 1
  1. 1.CNRS, ENSCL UMR 8181-UCCS-Unité de Catalyse et Chimie du SolideUniv. LilleLilleFrance
  2. 2.School of EngineeringThe University of WarwickCoventryUK

Personalised recommendations