Skip to main content
Log in

Effect of Alkali Promoters (K) on Nitrous Oxide Abatement Over Ir/Al2O3 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The promoting impact of potassium (0–1 wt% K) on nitrous oxide (N2O) catalytic decomposition over Ir/Al2O3 is investigated under both oxygen deficient and oxygen excess conditions. All samples were characterized by means of X-ray powder diffraction (XRD), temperature-programmed reduction (H2-TPR), ammonia desorption (NH3-TPD) and Fourier Transform Infrared Spectroscopy of pyridine adsorption (FTIR-Pyridine). The results reveal that the K-free Ir/Al2O3 catalyst consists mainly of the IrO2 phase, exhibiting also significant Lewis acidity, which is gradually eliminated by the addition of K. Catalytic performance results showed that the deN2O performance in the absence of O2 in the feed mixture is negatively affected upon increasing potassium loading. However, under oxygen excess conditions, a pronounced effect of K is observed. Although the catalytic performance of the un-doped catalyst is drastically hindered by the presence of O2, the K-promotion notably prohibits the oxygen poisoning. The optimum deN2O performance under oxygen excess conditions is obtained with potassium loading of 0.5 wt% K, which offers complete conversion of N2O at 580 °C, instead of the corresponding 50 % N2O conversion achieved with the un-modified sample. On the basis of characterization results, it was concluded that alkali-doping in combination with oxygen excess conditions are required towards the formation of active Ir entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997) Human alteration of the global nitrogen cycle: causes and consequences. Iss Ecol 1:1–17

    Google Scholar 

  2. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics J. Wiley, New York

    Google Scholar 

  3. Huai T, Durbin TD, Miller JW, Norbeck JM (2004) Estimates of the emission rates of nitrous oxide from light-duty vehicles using different chassis dynamometer test cycles. Atmos Environ 38:6621–6629

    Article  CAS  Google Scholar 

  4. Odaka M, Koike N, Suzuki H (2000) Influence of catalyst deactivation on N2O emissions from automobiles. Chemosphere Glob Change Sci 2:413

    Article  CAS  Google Scholar 

  5. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B Environ 9:25–64

    Article  CAS  Google Scholar 

  6. Burch R, Breen JP, Meunier FC (2002) A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl Catal B Environ 39:283–303

    Article  CAS  Google Scholar 

  7. Konsolakis M, Drosou C, Yentekakis IV (2012) Support mediated promotional effects of rare earth oxides (CeO2 and La2O3) on N2O decomposition and N2O reduction by CO or C3H6 over Pt/Al2O3 structured catalysts. Appl Catal B 123:405–413

    Article  Google Scholar 

  8. Bueno-Lopez A, Such-Basanez I, Salinas-Martinez de Lecea C (2006) Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. J Catal 244:102–112

    Article  CAS  Google Scholar 

  9. Konsolakis M, Aligizou F, Goula G, Yentekakis IV (2013) N2O decomposition over doubly-promoted Pt(K)/Al2O3–(CeO2–La2O3) structured catalysts: on the combined effects of promotion and feed composition. Chem Eng J 230:286–295

    Article  CAS  Google Scholar 

  10. Luo J, Gao F, Kim DH, Peden CHF (2014) Effects of potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts. Catal Today 231:164–172

    Article  CAS  Google Scholar 

  11. Pekridis G, Kaklidis N, Konsolakis M, Iliopoulou EF, Yentekakis IV, Marnellos GE (2011) Correlation of surface characteristics with catalytic performance of potassium promoted Pd/Al2O3 catalysts: the case of N2O reduction by alkanes or alkenes. Top Catal 54:1135–1142

    Article  CAS  Google Scholar 

  12. Okumura K, Motohiro T, Sakamoto Y, Shinjoh H (2009) Effect of combination of noble metals and metal oxide supports on catalytic reduction of NO by H2. Surf Sci 603:2544–2550

    Article  CAS  Google Scholar 

  13. Haber J, Nattich M, Machej T (2008) Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition. Appl Catal B 77:278–283

    Article  CAS  Google Scholar 

  14. Matsouka V, Konsolakis M, Lambert RM, Yentekakis IV (2008) In situ DRIFTS study of the effect of structure (CeO2–La2O3) and surface (Na) modifiers on the catalytic and surface behaviour of Pt/γ-Al2O3 catalyst under simulated exhaust conditions. Appl Catal B Environ 84:715–722

    Article  CAS  Google Scholar 

  15. Brosda S, Vayenas CG (2006) Rules of chemical promotion. Appl Catal B Environ 68:109–124

    Article  CAS  Google Scholar 

  16. Koukiou S, Konsolakis M, Lambert RM, Yentekakis IV (2007) Spectroscopic evidence for the mode of action of alkali promoters in Pt-catalysed de-NOx chemistry. Appl Catal B 76:101–106

    Article  CAS  Google Scholar 

  17. Maniak G, Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2011) Guidelines for optimization of catalytic activity of 3d transition metal oxide catalysts in N2O decomposition by potassium promotion. Catal Today 176:369–372

    Article  CAS  Google Scholar 

  18. Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants. Catal Commun 10:1062–1065

    Article  CAS  Google Scholar 

  19. Inger M, Kowalik P, Saramok M, Wilk M, Stelmachowski P, Maniak G, Granger P, Kotarba A, Sojka Z (2011) Laboratory and pilot scale synthesis, characterization and reactivity of multicomponent cobalt spinel catalyst for low temperature removal of N2O from nitric acid plant tail gases. Catal Today 176:365–368

    Article  CAS  Google Scholar 

  20. Zasada F, Stelmachowski P, Maniak G, Jean-Francois P, Kotarba A, Sojka Z (2009) Potassium promotion of cobalt spinel catalyst for N2O decomposition—accounted by work function measurements and DFT modelling. Catal Lett 127:126–131

    Article  CAS  Google Scholar 

  21. Parres-Esclapez S, Lopez-Suarez FE, Bueno-Lopez A, Illan-Gomez MJ, Ura B, Trawczynski J (2009) Ph-Sr/Al2O3 catalyst for N2O decomposition in the presence of O2. Top Catal 52:1832–1836

    Article  CAS  Google Scholar 

  22. Pekridis G, Kaklidis N, Konsolakis M, Athanasiou C, Yentekakis IV, Marnellos G (2011) A comparison between electrochemical and conventional catalyst promotion: the case of N2O reduction by alkanes or alkenes over K-modified Pd catalysts. Sol St Ion 192:653–658

    Article  CAS  Google Scholar 

  23. Pachatouridou E, Papista E, Iliopoulou EF, Delimitis A, Goula G, Yentekakis IV, Marnellos GE, Konsolakis M (2015) Nitrous oxide decomposition over Al2O3 supported noble metals (Pt, Pd, Ir): effect of metal loading and feed composition. J Environ Chem Eng 3:815–821

    Article  CAS  Google Scholar 

  24. Jehn H, Volker R, Ismail MI (1978) Iridium losses during oxidation. Platin Metals Rev 22:92–97

    CAS  Google Scholar 

  25. Yentekakis IV, Lambert RM, Tikhov MS, Konsolakis M, Kiousis V (1998) Promotion by sodium in emission control catalysis: a kinetic and spectroscopic study of the Pd-catalyzed reduction of NO by propene. J Catal 176:82–92

    Article  CAS  Google Scholar 

  26. Travert A, Vimont A, Sahibed-Dine A, Daturi M, Lavalley J-C (2006) Use of pyridine CH(D) vibrations for the study of Lewis acidity of metal oxides. Appl Catal A 307:98

    Article  CAS  Google Scholar 

  27. Lercher JA, Jentys A (2007) Infrared and raman spectroscopy for characterizing zeolites. Stud Surf Sci Catal 168:435

    Article  CAS  Google Scholar 

  28. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared adsorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347

    Article  CAS  Google Scholar 

  29. Iliopoulou EF, Efthimiadis EA, Nalbandian L, Vasalos IA, Barth JO, Lercher JA (2005) Ir-based additives for NO reduction and CO oxidation in the FCC regenerator: evaluation, characterization and mechanistic studies. Appl Catal B Environ 60:2277–2288

    Article  Google Scholar 

  30. Vicerich MA, Benitez VM, Especel C, Epron F, Pieck CL (2013) Influence of iridium content on the behaviour of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring opening of naphthenes. Appl Catal A Gen 453:167–174

    Article  CAS  Google Scholar 

  31. Ding M, Tu J, Qiu M, Wang T, Ma L, Li Y (2015) Impact of potassium promoter on Cu–Fe based mixed alcohols synthesis catalyst. Appl Energy 138:584–589

    Article  CAS  Google Scholar 

  32. Vernoux P, Leinekugel-LeCocq A-Y, Gaillard F (2003) Effect of the addition of Na to Pt/Al2O3 catalysts for the reduction of NO by C3H8 and C3H6 under lean-burn conditions. J Catal 219:247–257

    Article  CAS  Google Scholar 

  33. Yentekakis IV, Tellou V, Botzolaki G, Rapakousios IA (2005) A comparative study of the C3H6 + NO + O2, C3H6 + O2 and NO + O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts. Appl Catal B 56:229–239

    Article  CAS  Google Scholar 

  34. Bruner E, Pfeifer H (2008) NMR spectroscopic techniques for determining acidity and basicity. Mol Sieves 6:1–43

    Article  Google Scholar 

  35. Damon JP, Scokart PO (1980) Acid-base properties of alkali promoted chromia-alumina catalysts. Chem Lett 3:327–330

    Article  Google Scholar 

  36. Abello MC, Gomez MF, Cadus LE (1998) Selective oxidation of propane on MgO/–Al2O3-supported molybdenum catalyst: influence of promoters. Catal Lett 53:185–192

    Article  CAS  Google Scholar 

  37. Wang Y, Liu HH, Wang SY, Luo MF, Lu JQ (2014) Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts. J Catal 311:314–324

    Article  Google Scholar 

  38. Shen Q, Li L, Hao Z, Xu ZP (2008) Highly active and stable bimetallic Ir/Fe-USY catalysts for direct and NO-assisted N2O decomposition. Appl Catal B Environ 84:734–741

    Article  CAS  Google Scholar 

  39. Konsolakis M (2015) Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal 5:6397–6421

    Article  CAS  Google Scholar 

  40. Wögerbauer C, Maciejewski M, Schubert MM, Baiker A (2001) Effect of sodium on the catalytic properties of iridium black in the selective reduction of NOx by propene under lean-burn conditions. Catal Lett 74:1–7

    Article  Google Scholar 

  41. Liu ZP, Jenkins JS, King DA (2004) Car exhaust catalysis from first principles: selective NO reduction under excess O2 conditions on Ir. J Am Chem Soc 126:10747

    Google Scholar 

  42. Maniak G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A (2013) Rationales for the selection of the best precursor for potassium doping of cobalt spinel based deN2O catalyst. Appl Catal B 136–137:302–307

    Article  Google Scholar 

  43. Bueno-López A, Such-Basáñez I, Salinas-Martínez de Lecea C (2006) Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. J Catal 244:102–112

    Article  Google Scholar 

  44. Amiridis MD, Mihut C, Maciejewski M, Baiker A (2001) The selective catalytic reduction of NO by hydrocarbons over Pt- and Ir-based catalysts. Top Catal 28:141–150

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by European Union (European Social Fund) and Greek national funds through Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: THALES-Investing in knowledge society through the European Social Fund (MIS 375643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Papista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papista, E., Pachatouridou, E., Goula, M.A. et al. Effect of Alkali Promoters (K) on Nitrous Oxide Abatement Over Ir/Al2O3 Catalysts. Top Catal 59, 1020–1027 (2016). https://doi.org/10.1007/s11244-016-0584-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0584-0

Keywords

Navigation