Topics in Catalysis

, Volume 59, Issue 10–12, pp 987–995 | Cite as

High Intrinsic Catalytic Activity of CeVO4-Based Catalysts for Ammonia-SCR: Influence of pH During Hydrothermal Synthesis

  • Sylvain Gillot
  • Jean-Philippe Dacquin
  • Christophe DujardinEmail author
  • Pascal GrangerEmail author
Original Paper


The catalytic activity of unsupported CeVO4 solid was investigated in ammonia-SCR at various NO/NOx ratio. CeVO4 structure was obtained from a straightforward hydrothermal synthesis route under mild conditions and then stabilized after ageing in wet atmosphere at 600 °C. The influence of pH measured after the hydrothermal treatment could be a crucial parameter to get optimal bulk and surface properties. The evolution of intrinsic catalytic activity was compared with regards to bulk and surface properties extracted from extensive characterization. The stabilization of V5+ in CeVO4 structure during NH3-SCR reactions was observed even after thermal aging at high temperature. This opens new perspectives for vanadium-based catalysts in mobile sources applications.


Ammonia-SCR Nitrogen oxides Nitrous oxide Vanadium CeVO4 



The authors gratefully acknowledge financial support for this work from the French National Agency for Research (UREENOx Project, No. ANR-11-VPTT-002). The FEDER, the CNRS, the Région Nord Pas-de-Calais and the Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for fundings of XPS/LEIS/ToF–SIMS spectrometers within the Pôle Régional d’Analyses de Surface and X-ray diffractometers. The authors want to thank Pr Rose-Noëlle Vannier for the opportunity to make first catalytic measurements with CeVO4 sample obtained through solid-state synthesis method.


  1. 1.
    Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F (1996) Reactivity of V2O5–WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catal Today 29:143–148CrossRefGoogle Scholar
  2. 2.
    Lietti L, Ramis G, Berti F, Toledo G, Robba D, Busca G, Forzatti P (1998) Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catal Today 42:101–116CrossRefGoogle Scholar
  3. 3.
    Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM (1997) X-ray absorption of nanocrystal TiO2. Nanostruct Mater 9:355–358CrossRefGoogle Scholar
  4. 4.
    Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A (2002) Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B 39:181–190CrossRefGoogle Scholar
  5. 5.
    Kojima H, Fischer M, Haga H, Ohya N, Nishi K, Mito T, Fukushi N (2015) Next generation all in one close-coupled urea-SCR system. SAE technical paper 2015-01-0994Google Scholar
  6. 6.
    Guan B, Lin H, Zhu L, Tian B, Huang Z (2012) Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0.9Ce0.05V0.05O2−δ nanocomposites catalysts prepared by solution combustion route. Chem Eng J 181–182:307–322CrossRefGoogle Scholar
  7. 7.
    Peng Y, Wang C, Li J (2014) Structure–activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Appl Catal B 144:538–546CrossRefGoogle Scholar
  8. 8.
    Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5–WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem C 113:21177–21184CrossRefGoogle Scholar
  9. 9.
    Xie B, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2011) Synthesis of CeVO4 crystals with different sizes and shapes. J Clust Sci 22:555–561CrossRefGoogle Scholar
  10. 10.
    Ropp RC, Caroll B (1977) Precipitation of rare earth vanadates from aqueous solution. J Inorg Nucl Chem 39:1303–1307CrossRefGoogle Scholar
  11. 11.
    Sun LD, Zhang YX, Yan CH, Liao CS, Lu YQ (2002) Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process. Solid State Commun 124:35–38CrossRefGoogle Scholar
  12. 12.
    Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M (2007) Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J Catal 245:1–10CrossRefGoogle Scholar
  13. 13.
    Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction. Catal Today 114:3–12CrossRefGoogle Scholar
  14. 14.
    Yates M, Martin JA, Martin-Luengo MA, Suarez S, Blanco J (2005) N2O formation in the ammonia oxidation and in the SCR process with V2O5–WO3 catalysts. Catal Today 107–108:120–125CrossRefGoogle Scholar
  15. 15.
    Topsoe N-Y, Dumesic JA, Topsoe H (1995) Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: I.I. Studies of active sites and formulation of catalytic cycles. J Catal 151:241–252CrossRefGoogle Scholar
  16. 16.
    Cousin R, Courcot D, Abi-Aad E, Capelle S, Amoureux JP, Dourdin M, Guelton M, Aboukais A (1999) 51 V MAS NMR characterization of V–Ce–O catalysts. Colloid Surf A 158:43–49CrossRefGoogle Scholar
  17. 17.
    Huang H, Gu Y, Zhao J, Wang X (2015) Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J Catal 326:54–68CrossRefGoogle Scholar
  18. 18.
    Yu P, Hayes SA, O’Keefe TJ, O’Keefe MJ, Stoffer JO (2006) The Phase stability of cerium species in aqueous systems II. The CeIII/IV–H2O–H2O2/O2 systems. Equilibrium considerations and Pourbaix diagram calculations. J Electrochem Soc 153:C74–C79CrossRefGoogle Scholar
  19. 19.
    Tok AIY, Boey FYC, Dong Z, Sun XL (2007) Hydrothermal synthesis of CeO2 nano-particles. J Mater Process Technol 190:217–222CrossRefGoogle Scholar
  20. 20.
    Bellakki MB, Baidya T, Shivakumara C, Vasanthacharya NY, Hegde MS, Madras G (2008) Synthesis, characterization, redox and photocatalytic properties of Ce1−xPdxVO4 (0 ≤ x ≤ 0.1). Appl Catal B 84:474–481CrossRefGoogle Scholar
  21. 21.
    Opara-Krasovec U, Orel B, Surca A, Bukovec N, Reisfelfd R (1999) Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol-gel derived ion-storage films. Solid State Ionics 118:195–214CrossRefGoogle Scholar
  22. 22.
    Martínez-Huerta MV, Coronado JM, Fernández-Garcia M, Inglesias-Juez A, Deo G, Fierro JLG, Baňares MA (2004) Nature of the vanadia–ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J Catal 225:240–248CrossRefGoogle Scholar
  23. 23.
    Demeter M, Neumann M, Reichelt W (2000) Mixed-valence vanadium oxides studied by XPS. Surf Sci 454–456:41–44CrossRefGoogle Scholar
  24. 24.
    Kasperkiewicz J, Kovacich JA, Lichtman D (1983) XPS studies of vanadium and vanadium oxides. J Electr Spect Relat Phenom 32:123–132CrossRefGoogle Scholar
  25. 25.
    Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electr Spect Relat Phenom 71:249–261CrossRefGoogle Scholar
  26. 26.
    Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) XPS Study of the reduction of cerium dioxide. Surf Int Anal 20:508–512CrossRefGoogle Scholar
  27. 27.
    Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A 327:261–269CrossRefGoogle Scholar
  28. 28.
    Wu G, Li J, Fang Z, Lan L, Wang R, Lin T, Gong M, Chen Y (2015) Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2–WO3–SiO2 monolith catalysts. Chem Eng J 271:1–13CrossRefGoogle Scholar
  29. 29.
    Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P (2010) High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—part I: V2O5–WO3/TiO2 catalysts. Appl Catal B 95:39–47CrossRefGoogle Scholar
  30. 30.
    Dahlin S, Nilsson M, Bäckström D, Bergman S L, Bengtsson E, Bernasek S L, Pettersson L J (2016) Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5–WO3/TiO2 SCR catalysts. Appl Catal B 183:377–385CrossRefGoogle Scholar
  31. 31.
    Liu F, He H, Lian Z, Shan W, Xie L, Asakura K, Yang W, Deng H (2013) Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. J Catal 307:340–351CrossRefGoogle Scholar
  32. 32.
    Kamata H, Takahashi K, Odenbrand CUI (1999) Kinetics of the Selective Reduction of NO with NH3 over a V2O5(WO3)/TiO2 Commercial SCR Catalyst. J Catal 185:106–113CrossRefGoogle Scholar
  33. 33.
    Zhang S, Zhong Q, Zhao W, Li Y (2014) Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature. Chem Eng J 253:207–216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181UCCS - Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations