Advertisement

Topics in Catalysis

, Volume 59, Issue 10–12, pp 887–894 | Cite as

Structured Foam Reactor with CuSSZ-13 Catalyst for SCR of NOx with Ammonia

  • J. Kryca
  • M. Iwaniszyn
  • M. Piątek
  • P. J. Jodłowski
  • R. Jędrzejczyk
  • R. Pędrys
  • A. Wróbel
  • J. Łojewska
  • A. Kołodziej
Article

Abstract

In this paper, both a structured catalyst based on FeCrAl (Kanthal) foam with in situ synthesized CuSSZ-13 and powder CuSSZ-13 were prepared and tested in NH3-SCR. The kinetic data derived at diffusion-free parameters window were combined with mass transport and pressure drop correlations (experiments from our previous work [1]) for three typical reactor packings: FeCrAl (Kanthal) foam, monoliths and packed beds with two latters used as a references. Based on correlations derived the three packings were compared in terms of pressure drop and reactor length. For the assumed evaluation criteria of 90 % of NOx conversion the simulations show that the packed bed reactor is beyond the comparison with the structured reactors. The foam reactor can demonstrate low pressure drop that is comparable to the monoliths and can be shorter than the monolithic one. The findings confirm high mass and heat transport parameters of metal foams.

Keywords

Metal foam CuSSZ-13 NH3-SCR Heat transfer Mass transfer 

List of Symbols

A0

Pre-exponential coefficient in Arrhenius equation (s−1)

CNO

Nitrogen oxide concentration (mol m−3)

\(D_{A,eff}\)

Effective diffusivity in porous media (m2 s−1)

Dpore

Pore diameter in foam (m)

Dstrut

Strut diameter in foam (m)

Dp

Particle (sphere) diameter (m)

Dh

Hydraulic diameter (m)

Ea

Activation energy (kJ mol−1)

FNO

Flow rate of NO (mol s−1)

f

Fanning friction factor

k

Kinetic rate constants of reaction (s−1)

kc

Mass transfer coefficient (s−1)

L

Length of reactor (m)

m

Mass of a catalyst (g)

∆P

Pressure drop across the reactor (kPa)

r

Kinetic rate (mol s−1m−2)

R

Gas constant (J K−1mol−1)

Re

Reynolds number, Re = w0 Dfoam ρ η−1

Sc

Schmidt number, Sc = η ρ−1 D A −1

Sh

Sherwood number, Sh = kC Dfoam D A −1

Sv

External surface area (m−1)

T

Temperature (K)

w0

Superficial velocity (m s−1)

V

Reactor volume (m3)

X

Conversion

Greek Letters

\(\varepsilon\)

Porosity

\(\eta\)

Catalyst effectiveness factor

\(\rho\)

Gas density (kg m−3)

Notes

Acknowledgments

This work was supported by Polish National Science Centre No. 2013/09/B/ST8/00171. The PhD dissertation of Joanna Kryca was financed by the Polish National Science Center based on the decisions No. 2014/12/T/ST8/00674. The catalyst was synthesized and characterized within the BRIDGE Programme Grant (No. 2010-1/4) within the Foundation for Polish Science, co-financed by the EU Structured Funds. The authors would also like to thank Sachem Inc. for supplying the adamantium hydroxide used to synethesise SSZ-13 zeolite. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08).

References

  1. 1.
    Ochońska-Kryca J, Iwaniszyn M, Piątek M, Jodłowski PJ, Thomas J, Kołodziej A, Łojewska J (2013) Catal Today 216:135–141CrossRefGoogle Scholar
  2. 2.
    Kołodziej A, Łojewska J (2009) Catal Today 147:S120–S124CrossRefGoogle Scholar
  3. 3.
    Kołodziej A, Łojewskac J, Ochońska J, Łojewski T (2011) Chem Eng Process 50:869–876CrossRefGoogle Scholar
  4. 4.
    Pestryakov AN, Lunin VV, Devochkin AN, Petrov LA, Bogdanchikova NE, Petranovskii VP (2002) Appl Catal A 227:125–130CrossRefGoogle Scholar
  5. 5.
    Huff M, Schmidt LD (1822) J Phys Chem 97(1993):11815–11822Google Scholar
  6. 6.
    Pestryakov AN, Fyodorov AA, Gaisinovich MS, Shurov VP, Fyodorova IV, Gubaydulina TA (1995) React Kinet Catal Lett 54:167–172CrossRefGoogle Scholar
  7. 7.
    Cambell L (1993) Inventor, 8 Jun. 1993. United States patent US 5217939Google Scholar
  8. 8.
    Podyacheva OYu, Ketov AA, Ismagilov ZR, Ushakov VA, Bos A, Veringa HJ (1997) React Kinet Catal Lett 60:243–250CrossRefGoogle Scholar
  9. 9.
    Richardson JT, Garrait M, Hung JK (2003) Appl Catal A 255:69–82CrossRefGoogle Scholar
  10. 10.
    Nielsen M, Illerup JB (2003) Danish emission inventories for stationary combustion plants. Inventories until year 2001. National Environmental Research Institute, Denmark. http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/. Accessed 15 Dec 2015
  11. 11.
    Feldkamp LA, Davis LC, Kress JW (1984) J Opt Soc Am A 1:612CrossRefGoogle Scholar
  12. 12.
    Łojewska J, Kołodziej A, Dynarowicz-Łątka P, Wesełucha-Birczyńska A (2005) Catal Today 101:81–91CrossRefGoogle Scholar
  13. 13.
    Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441–448CrossRefGoogle Scholar
  14. 14.
    Komatsu T, Nunokawa M, Moon IS, Takahara T, Namba S, Yashima T (1994) J Catal 148:427–437CrossRefGoogle Scholar
  15. 15.
    Brandenberger S, Kröcher O, Tissler OA, Althoff R (2008) Catal Rev 50:492–531CrossRefGoogle Scholar
  16. 16.
    Roy S, Hegde MS, Madras G (2009) Appl Energy 86:2283–2297CrossRefGoogle Scholar
  17. 17.
    Kołodziej A, Łojewska J, Tyczkowski J, Jodłowski P, Redzynia W, Iwaniszyn M, Zapotoczny S, Kuśtrowski P (2012) Chem Eng J 200–202:329–337CrossRefGoogle Scholar
  18. 18.
    Gilliliand ER (1934) Ind Eng Chem 26:681–685CrossRefGoogle Scholar
  19. 19.
    Eng J, Bartholomew CH (1997) J Catal 171:27–44CrossRefGoogle Scholar
  20. 20.
    Kwak JH, Tran D, Szanyi J, Peden ChHF, Lee JH (2012) Catal Lett 142:295–301CrossRefGoogle Scholar
  21. 21.
    Wang TJ, Baek SW, Kwon HJ, Kim YJ, Nam IS, Cha MS, Yeo GK (2011) Ind Eng Chem Res 50:2850CrossRefGoogle Scholar
  22. 22.
    Olsson L, Sjovall H, Blint RJ (2008) Appl Catal B 81:203–217CrossRefGoogle Scholar
  23. 23.
    Pant A, Schmieg SJ (2011) Ind Eng Chem Res 50:5490CrossRefGoogle Scholar
  24. 24.
    Ertl G, Knozinger H, Schuth F, Weitkapm J (eds) (2008) Handbook of heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Girdon and Breach Science Publisher, New YorkGoogle Scholar
  26. 26.
    Ergun S (1952) Chem Eng Prog 48:89Google Scholar
  27. 27.
    Hawthorn RD (1974) AIChE Symp Ser 70(137):428Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Kryca
    • 1
    • 4
  • M. Iwaniszyn
    • 1
  • M. Piątek
    • 1
  • P. J. Jodłowski
    • 2
  • R. Jędrzejczyk
    • 3
  • R. Pędrys
    • 5
  • A. Wróbel
    • 5
  • J. Łojewska
    • 4
  • A. Kołodziej
    • 1
    • 6
  1. 1.Institute of Chemical EngineeringPolish Academy of SciencesGliwicePoland
  2. 2.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyKrakówPoland
  3. 3.Malopolska Centre of BiotechnologyKrakówPoland
  4. 4.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  5. 5.Institute of PhysicsJagiellonian UniversityKrakówPoland
  6. 6.Faculty of Civil EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations