Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Porous TaON Photoanodes Loaded with Cobalt-Based Cocatalysts for Efficient and Stable Water Oxidation Under Visible Light

Abstract

Porous photoanodes for visible-light-induced water oxidation were prepared via simple electrophoretic deposition of TaON particles, preliminarily modified with CoO x nanoparticles, on a Ti substrate. Post-necking process involving methanolic TaCl5 solution and subsequent heating in NH3 stream formed bridges between TaON particles, which facilitated electron transport within the porous electrode and thereby increased the photocurrent significantly. The temperature of the NH3 treatment in the post-necking process significantly influenced both the charge transport through the bridges and the activity of the CoO x cocatalyst for water oxidation, thus producing maximum photocurrent after heating at 723 K. The highly dispersed CoO x nanoparticles considerably improved the stability of the photocurrent due to efficient capture of photogenerated holes and consequent reduction of the probability of self-oxidative deactivation of the TaON surface. The combination of phosphate buffer solutions with a highly dispersed CoO x cocatalyst on the TaON surface significantly increased the photocurrent due to the in situ photoelectrochemical production of an amorphous cobalt/phosphate (Co–Pi) phase, which covers the TaON surface almost entirely, and consequently improved the its stability in long-term photoirradiation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lee JS (2005) Catal Surv Asia 9:217–227

  2. 2.

    Esswein MJ, Nocera DG (2007) Chem Rev 107:4022–4047

  3. 3.

    Osterloh FE (2008) Chem Mater 20:35–54

  4. 4.

    Inoue Y (2009) Energy Environ Sci 2:364–386

  5. 5.

    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

  6. 6.

    Abe R (2010) J Photochem Photobiol, C 11:179–209

  7. 7.

    Maeda K, Domen K (2010) J Phys Chem Lett 1:2655–2661

  8. 8.

    Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Science 334:645–648

  9. 9.

    Luo JS, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Science 345:1593–1596

  10. 10.

    Alexander BD, Kulesza PJ, Rutkowska L, Solarska R, Augustynski J (2008) J Mater Chem 18:2298–2303

  11. 11.

    Santato C, Ulmann M, Augustynski J (2001) Adv Mater 13:511–514

  12. 12.

    Santato C, Ulmann M, Augustynski J (2001) J Phys Chem B 105:936–940

  13. 13.

    Seabold JA, Choi KS (2011) Chem Mater 23:1105–1112

  14. 14.

    Bjorksten U, Moser J, Gratzel M (1994) Chem Mater 6:858–863

  15. 15.

    Cesar I, Kay A, Martinez JAG, Gratzel M (2006) J Am Chem Soc 128:4582–4583

  16. 16.

    Le Formal F, Gratzel M, Sivula K (2010) Adv Funct Mater 20:1099–1107

  17. 17.

    Zhong DK, Cornuz M, Sivula K, Graetzel M, Gamelin DR (2011) Energy Environ Sci 4:1759–1764

  18. 18.

    Chatchai P, Murakami Y, Kishioka SY, Nosaka AY, Nosaka Y (2008) Electrochem Solid State Lett 11:H160–H163

  19. 19.

    Iwase A, Kudo A (2010) J Mater Chem 20:7536–7542

  20. 20.

    Ng YH, Iwase A, Kudo A, Amal R (2010) J Phys Chem Lett 1:2607–2612

  21. 21.

    Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) J Phys Chem B 110:11352–11360

  22. 22.

    Sayama K, Nomura A, Zou ZG, Abe R, Abe Y, Arakawa H (2003) Chem Commun 2908–2909

  23. 23.

    Sayama K, Wang NN, Miseki Y, Kusama H, Onozawa-Komatsuzaki N, Sugihara H (2010) Chem Lett 39:17–19

  24. 24.

    Scaife DE (1980) Sol Energy 25:41–54

  25. 25.

    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Chem Commun 16:1698–1699

  26. 26.

    Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K (2003) Catal Today 78:555–560

  27. 27.

    Hara M, Nunoshige J, Takata T, Kondo JN, Domen K (2003) Chem Commun 24:3000–3001

  28. 28.

    Abe R, Takata T, Sugihara H, Domen K (2005) Chem Commun 30:3829–3831

  29. 29.

    Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K (2008) Chem Lett 37:138–139

  30. 30.

    Maeda K, Terashima H, Kase K, Domen K (2009) Appl Catal A 357:206–212

  31. 31.

    Maeda K, Higashi M, Lu DL, Abe R, Domen K (2010) J Am Chem Soc 132:5858–5868

  32. 32.

    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) J Phys Chem A 106:6750–6753

  33. 33.

    Kasahara A, Nukumizu K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) J Phys Chem B 107:791–797

  34. 34.

    Nishimura N, Raphael B, Maeda K, Le Gendre L, Abe R, Kubota J, Domen K (2010) Thin Solid Films 518:5855–5859

  35. 35.

    Higashi M, Abe R, Takata T, Domen K (2009) Chem Mater 21:1543–1549

  36. 36.

    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Chem Phys Lett 452:120–123

  37. 37.

    Matoba T, Maeda K, Domen K (2011) Chemistry 17:14731–14735

  38. 38.

    Maeda K, Lu D, Domen K (2013) Angew Chem Int Ed 52:6488–6491

  39. 39.

    Abe R, Higashi M, Domen K (2010) J Am Chem Soc 132:11828–11829

  40. 40.

    Higashi M, Domen K, Abe R (2011) Energy Environ Sci 4:4138–4147

  41. 41.

    Higashi M, Domen K, Abe R (2012) J Am Chem Soc 134:6968–6971

  42. 42.

    Higashi M, Domen K, Abe R (2013) J Am Chem Soc 135:10238–10241

  43. 43.

    Gujral SS, Simonov AN, Higashi M, Abe R, Spiccia L (2015) ChemElecroChem 2:1270–1278

  44. 44.

    Abe R, Takata T, Sugihara H, Domen K (2005) Chem Lett 34:1162–1163

  45. 45.

    Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M (2008) Thin Solid Films 516:4613–4619

  46. 46.

    Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) J Am Ceram Soc 80:3157–3171

  47. 47.

    Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) J Phys Chem B 107:1798–1803

  48. 48.

    Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426

  49. 49.

    Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) J Chem Soc, Faraday Trans 1(84):2795–2806

  50. 50.

    Ziani A, Nurlaela E, Dhawale DS, Silva DA, Alarousu E, Mohammed OF, Takanabe K (2015) PCCP 17:2670–2677

  51. 51.

    Kanan MW, Nocera DG (2008) Science 321:1072–1075

  52. 52.

    Kanan MW, Surendranath Y, Nocera DG (2009) Chem Soc Rev 38:109–114

  53. 53.

    Lutterman DA, Surendranath Y, Nocera DG (2009) J Am Chem Soc 131:3838–3839

  54. 54.

    Esswein AJ, Surendranath Y, Reece SY, Nocera DG (2011) Energy Environ Sci 4:499–504

Download references

Acknowledgments

This work was financially supported by ENEOS Hydrogen Trust Fund, JST-CREST, and JSPS KAKENHI Grant Number 15K17896. The authors are indebted to the technical division of Catalysis Research Center, Hokkaido University for their help in designing the experimental setups for photoelectrochemical measurements.

Author information

Correspondence to Ryu Abe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1627 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Higashi, M., Tomita, O. & Abe, R. Porous TaON Photoanodes Loaded with Cobalt-Based Cocatalysts for Efficient and Stable Water Oxidation Under Visible Light. Top Catal 59, 740–749 (2016). https://doi.org/10.1007/s11244-016-0548-4

Download citation

Keywords

  • Water splitting
  • Visible light
  • Oxynitride
  • Photoanode
  • Water oxidation
  • Cocatalyst