Topics in Catalysis

, Volume 59, Issue 5–7, pp 526–531 | Cite as

Real-Time Observation of Reaction Processes of CO2 on Cu(997) by Ambient-Pressure X-ray Photoelectron Spectroscopy

  • Takanori Koitaya
  • Susumu Yamamoto
  • Yuichiro Shiozawa
  • Kaori Takeuchi
  • Ro-Ya Liu
  • Kozo Mukai
  • Shinya Yoshimoto
  • Kazuma Akikubo
  • Iwao Matsuda
  • Jun Yoshinobu
Original Paper

Abstract

The reaction of CO2 on the vicinal Cu(997) surface at 340 K under CO2 gas pressure of 0.8 mbar was investigated by ambient pressure X-ray photoelectron spectroscopy. A main reaction product on the surface was identified as carbonate (CO3), based on estimation of the composition ratio of oxygen to carbon. CO3 was produced on the surface through the reaction of CO2 with oxygen formed from CO2 dissociation. The amount of adsorbed CO3 was increased and saturated as time elapsed. After saturation of adsorbed CO3, atomic oxygen appeared on the surface, indicating that CO2 dissociation into CO and O continued to take place. The present study shows the importance of CO3 intermediate in the CO2 chemistry on stepped Cu surfaces.

Keywords

Carbon dioxide Carbonate Copper Ambient pressure X-ray photoelectron spectroscopy 

References

  1. 1.
    Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89:334–353CrossRefGoogle Scholar
  2. 2.
    Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Solymosi F (1991) The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal-surfaces. J Mol Catal 65(3):337–358CrossRefGoogle Scholar
  5. 5.
    Rasmussen PB, Taylor PA, Chorkendorff I (1992) The interaction of carbon-dioxide with Cu(100). Surf Sci 269–270:352–359CrossRefGoogle Scholar
  6. 6.
    Taylor PA, Rasmussen PB, Chorkendorff I (1992) Carbon-dioxide chemistry on Cu(100). J Vac Sci Technol, A 10(4):2570–2575CrossRefGoogle Scholar
  7. 7.
    Rodriguez JA, Clendening WD, Campbell CT (1989) Adsorption of CO and CO2 on clean and cesium-covered Cu(110). J Phys Chem 93(13):5238–5248CrossRefGoogle Scholar
  8. 8.
    Bönicke IA, Kirstein W, Thieme F (1994) A study on CO2 dissociation on a stepped (332) copper surface. Surf Sci 307–309:177–181CrossRefGoogle Scholar
  9. 9.
    Fu SS, Somorjai GA (1992) Interactions of O2, CO, CO2, and D2 with the stepped Cu(311) crystal-face: comparison to Cu(110). Surf Sci 262(1–2):68–76CrossRefGoogle Scholar
  10. 10.
    Salmeron M, Schlögl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63(4):169–199CrossRefGoogle Scholar
  11. 11.
    Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42(13):5833–5857CrossRefGoogle Scholar
  12. 12.
    Deng X, Verdaguer A, Herranz T, Weis C, Bluhm H, Salmeron M (2008) Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24(17):9474–9478CrossRefGoogle Scholar
  13. 13.
    Yamamoto S, Senba Y, Tanaka T, Ohashi H, Hirono T, Kimura H, Fujisawa M, Miyawaki J, Harasawa A, Seike T, Takahashi S, Nariyama N, Matsushita T, Takeuchi M, Ohata T, Furukawa Y, Takeshita K, Goto S, Harada Y, Shin S, Kitamura H, Kakizaki A, Oshima M, Matsuda I (2014) New soft X-ray beamline BL07LSU at SPring-8. J Synchrotron Rad 21:352–365CrossRefGoogle Scholar
  14. 14.
    Hayden BE, Prince K, Woodruff DP, Bradshaw AM (1983) An IRAS study of formic-acid and surface formate adsorbed on Cu(110). Surf Sci 133(2–3):589–604CrossRefGoogle Scholar
  15. 15.
    Axnanda S, Scheele M, Crumlin E, Mao B, Chang R, Rani S, Faiz M, Wang S, Alivisatos AP, Liu Z (2013) Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles. Nano Lett 13:6176–6182CrossRefGoogle Scholar
  16. 16.
    Davies PR, Keel JM (2000) The reaction of carbon dioxide with amines at a Cu(211) surface. Surf Sci 469(2–3):204–213CrossRefGoogle Scholar
  17. 17.
    Copperthwaite RG, Davies PR, Morris MA, Roberts MW, Ryder RA (1988) The reactive chemisorption of carbon dioxide at magnesium and copper surfaces at low temperature. Catal Lett 1:11–20CrossRefGoogle Scholar
  18. 18.
    Browne VM, Carley AF, Copperthwaite RG, Davies PR, Moser EM, Roberts MW (1991) Activation of carbon-dioxide at bismuth, gold and copper surfaces. Appl Surf Sci 47(4):375–379CrossRefGoogle Scholar
  19. 19.
    Swift P (1982) Adventitious carbon—the panacea for energy referencing. Surf Interface Anal 4(2):47–51CrossRefGoogle Scholar
  20. 20.
    Rajumon MK, Prabhakaran K, Rao CNR (1990) Adsorption of oxygen on (100), (110) and (111) surfaces of Ag, Cu and Ni: an electron spectroscopic study. Surf Sci 233(1–2):L237–L242CrossRefGoogle Scholar
  21. 21.
    Carley AF, Chambers A, Davies PR, Mariotti GG, Kurian R, Roberts MW (1996) Surface oxygen and chemical specificity at copper and caesium surfaces. Faraday Discuss 105:225–235CrossRefGoogle Scholar
  22. 22.
    Pohl M, Otto A (1998) Adsorption and reaction of carbon dioxide on pure and alkali-metal promoted cold-deposited copper films. Surf Sci 406(1–3):125–137CrossRefGoogle Scholar
  23. 23.
    Carley AF, Davies PR, Mariotti GG (1998) The oxidation of formic acid to carbonate at Cu(110) surfaces. Surf Sci 401(3):400–411CrossRefGoogle Scholar
  24. 24.
    Muttaqien F, Hamamoto Y, Inagaki K, Morikawa Y (2014) Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces. J Chem Phys 141(3):034702CrossRefGoogle Scholar
  25. 25.
    Schumacher N, Andersson K, Grabow LC, Mavrikakis M, Nerlov J, Chorkendorff I (2008) Interaction of carbon dioxide with Cu overlayers on Pt(111). Surf Sci 602(3):702–711CrossRefGoogle Scholar
  26. 26.
    Millar GJ, Rochester CH, Howe C, Waugh KC (1992) A combined infrared, temperature programmed desorption and temperature programmed reaction spectroscopy study of CO2 and H2 interactions on reduced and oxidized silica-supported copper-catalysts. Mol Phys 76(4):833–849CrossRefGoogle Scholar
  27. 27.
    Waugh KC (2012) Methanol synthesis. Catal Lett 142(10):1153–1166CrossRefGoogle Scholar
  28. 28.
    Schumacher N, Andersson KJ, Nerlov J, Chorkendorff I (2008) Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111). Surf Sci 602(16):2783–2788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Takanori Koitaya
    • 1
  • Susumu Yamamoto
    • 1
  • Yuichiro Shiozawa
    • 1
  • Kaori Takeuchi
    • 1
  • Ro-Ya Liu
    • 1
  • Kozo Mukai
    • 1
  • Shinya Yoshimoto
    • 1
  • Kazuma Akikubo
    • 1
  • Iwao Matsuda
    • 1
  • Jun Yoshinobu
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of TokyoKashiwaJapan

Personalised recommendations