Advertisement

Topics in Catalysis

, Volume 59, Issue 5–7, pp 628–634 | Cite as

Investigation of Li-Ion Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission

  • Mario El KazziEmail author
  • Izabela Czekaj
  • Erik J. Berg
  • Petr Novák
  • Matthew A. BrownEmail author
Original Paper

Abstract

The near ambient pressure photoemission (NAPP) technique equipped with a liquid jet (LJ) is used for the first time to explore the electronic structure of the most commonly employed carbonate based Li-ion battery electrolytes. Experiments were performed at the SIM beamline of the Swiss Light Source (SLS) with the purpose of monitoring the Li-ion (Li+, Li 1s) solvation of 1M LiClO4 in 1:1 EC:DMC, both anhydrous and with the addition of 5 % H2O, and in DMSO. These electrolytes have high vapor pressures that prevent their study by traditional XPS and therefore necessitate the use of NAPP. Our measurements show differences in binding energies between the Cl 2p and Li 1s core levels (ΔE = Cl 2p3/2−Li 1s) between different solvents, in particularly between the EC:DMC and the DMSO. The addition of only 5 % H2O clearly influences the electronic structure in DMC:EC, but to a lesser extent than completely changing the solvent. Density functional theory (DFT) calculations of solvated Li+ structures within the solvent-separated ion pair (SSIP) model provide support to our experimental findings by revealing that the observed ΔE between solvents is directly related to the change in the electronic structure of the Li+ cation and ClO4 anion due to the modification of the solvation shell. This study establishes LJ NAPP as a powerful analytical method for the study of Li+ solvation that will prove complementary to the more established approaches of FTIR and NMR, but at the same time will allow for new experiments that cannot yet be realized by FTIR and NMR.

Keywords

Liquid jet Li+ solvation Carbonate based electrolyte Li-ion battery XPS 

Notes

Acknowledgments

The NAPP endstation of the Swiss Light Source is supported by PSI and an SNF R’Equip (No. 139139) grant. The authors are grateful to Dr. Armin Kleibert for his tremendous support at the SIM beamline. M.A.B. acknowledges Prof. Nicholas D. Spencer and the LSST at ETH Zürich for continued support. The implementation of the LJ at the SLS benefitted over the years from the continued support and enthusiasm of Prof. M. Ammann and Prof. J. van Bokhoven.

References

  1. 1.
    International Energy Outlook (2013) U.S. Energy Information Administration, DOE/EIA-0484 www.eia.gov/ieo
  2. 2.
    Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029CrossRefGoogle Scholar
  3. 3.
    Kang X (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRefGoogle Scholar
  4. 4.
    Kang X (2014) Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem Rev 114:11503–11618CrossRefGoogle Scholar
  5. 5.
    Villevieille C, Sasaki T, Novák P (2014) Novel electrochemical cell designed for operando techniques and impedance studies. RSC Adv 4:6782–6789CrossRefGoogle Scholar
  6. 6.
    Godbole VA, Hess M, Villevieille C, Kaiser H, Colin JF, Novák P (2013) Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries. RSC Adv 3:757–763CrossRefGoogle Scholar
  7. 7.
    Bleith P, Van Beek W, Kaiser H, Novák P, Villevieille C (2015) Simultaneous in situ x-ray absorption spectroscopy and x-ray diffraction studies on battery materials: the case of Fe0.5TiOPO4. J Phys Chem C 119:3466–3471CrossRefGoogle Scholar
  8. 8.
    Gu M, Parent LR, Mehdi BL, Unocic RR, McDowell MT, Sacci RL, Xu W, Connell JG, Xu P, Abellan P, Chen X, Zhang Y, Perea DE, Evans JE, Lauhon LJ, Zhang JG, Liu J, Browning ND, Cui Y, Arslan I, Wang CM (2013) Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13:6106–6112CrossRefGoogle Scholar
  9. 9.
    Villevieille C, Ebner M, Gómez-Cámer JL, Marone F, Novák P, Wood V (2015) Influence of conversion material morphology on electrochemistry studied with operando x-ray tomography and diffraction. Adv Mater 27:1676–1681CrossRefGoogle Scholar
  10. 10.
    Pérez-Villar S, Lanz P, Schneider H, Novák P (2013) Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy. Electrochim Acta 106:506–515CrossRefGoogle Scholar
  11. 11.
    Lanz P, Novák P (2014) Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate. J Electrochem Soc 161:A1555–A1563CrossRefGoogle Scholar
  12. 12.
    Chen D, Indris S, Schulz M, Gamer B, Mönig R (2011) In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J Power Sources 196:6382–6387CrossRefGoogle Scholar
  13. 13.
    Beaulieu LY, Hatchard TD, Bonakdarpour A, Fleischauer MD, Dahn JR (2003) Reaction of Li with alloy thin films studied by in situ AFM. J Electrochem Soc 150:A1457–A1464CrossRefGoogle Scholar
  14. 14.
    Castel E, Berg EJ, El Kazzi M, Novák P, Villevieille C (2014) Differential electrochemical mass spectrometry study of the interface of xLi2MnO3(1−x) LiMO2 (M=Ni Co, and Mn) Material as a positive electrode in Li-Ion batteries. Chem Mater 26:5051–5057CrossRefGoogle Scholar
  15. 15.
    Malmgrena S, Cioseka K, Hahlina M, Gustafssona T, Gorgoic M, Rensmob H, Edström K (2013) Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim Acta 97:23–32CrossRefGoogle Scholar
  16. 16.
    Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2:715Google Scholar
  17. 17.
    Burba CM, Frech R (2005) Spectroscopic measurements of ionic association in solutions of LiPF6. J Phys Chem B 109:15161–15164CrossRefGoogle Scholar
  18. 18.
    Foley MP, Worosz CJ, Sweely K, Henderson WA, De Long HC, Trulove PC (2013) Phase behavior and solvation of lithium trifluoromethanesulfonate in propylene carbonate. ECS Trans 45:41–47CrossRefGoogle Scholar
  19. 19.
    Matsubara K, Kaneuchi R, Maekita N (1998) 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents. Chem Soc Faraday Trans 94:3601–3605CrossRefGoogle Scholar
  20. 20.
    Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Ivestigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42:5833–5857CrossRefGoogle Scholar
  21. 21.
    Brown MA, Seidel R, Thurmer S, Faubel M, Hemminger JC, Van Bokhoven JA, Winter B, Sterre M (2011) Electronic structure of sub-10 nm colloidal silica nanoparticles measured by in situ photoelectron spectroscopy at the aqueous-solid interface. Phys Chem Chem Phys 13:12720–12723CrossRefGoogle Scholar
  22. 22.
    Bluhm H (2010) Photoelectron spectroscopy of surfaces under humid conditions. J Electron Spectrosc Relat Phenom 177:71–84CrossRefGoogle Scholar
  23. 23.
    Brown MA, Faubel M, Winter B (2009) X-ray photo- and resonant auger-electron spectroscopy studies of liquid water and aqueous solutions. Ann Rep Prog Chem Sect C 105:174–212CrossRefGoogle Scholar
  24. 24.
    Brown MA, Winter B, Faubel M, Hemminger JC (2009) The spatial distribution of nitrate and nitrite anions at the liquid/vapor interface of aqueous solutions. J Am Chem Soc 131:8354–8355CrossRefGoogle Scholar
  25. 25.
    Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934CrossRefGoogle Scholar
  26. 26.
    Nolting D, Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B (2007) pH-induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J Am Chem Soc 129:14068–14073CrossRefGoogle Scholar
  27. 27.
    Brown MA, Beloqui Redondo A, Sterrer M, Winter B, Pacchioni G, Abbas Z, Van Bokhoven JA (2013) Measure of surface potential at the aqueous-oxide nanoparticle interface by XPS from a liquid microjet. Nano Lett 13:5403–5407CrossRefGoogle Scholar
  28. 28.
    Pruyne JG, Lee M-T, Fábri C, Beloqui Redondo A, Kleibert A, Ammann M, Brown MA, Krisch MJ (2014) The liquid-vapor interface of formic acid solutions in salt water: a comparison of macroscopic surface tension and microscopic X-ray photoelectron spectroscopy measurements. J Phys Chem C 118:29350–29360CrossRefGoogle Scholar
  29. 29.
    Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources 68:91–98CrossRefGoogle Scholar
  30. 30.
    Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2013) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267CrossRefGoogle Scholar
  31. 31.
    Flechsig U, Nolting F, Fraile Rodriguez A, Krempasky J, Quitmann C, Schmidt T, Spielmann S, Zimoch D (2010) Performance measurements at the SLS SIM beamline. AIP Conf Proc 1234:319–322Google Scholar
  32. 32.
    Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106:1176–1211CrossRefGoogle Scholar
  33. 33.
    Brown MA, Jordan I, Redondo AB, Kleibert A, Wörner HJ, Van Bokhoven JA (2013) In situ photoelectron spectroscopy at the liquid/nanoparticle interface. Surf Sci 610:1–6CrossRefGoogle Scholar
  34. 34.
    Brown MA, Beloqui Redondo A, Jordan I, Duyckaerts N, Lee M-T, Ammann M, Nolting F, Kleibert A, Huthwelker T, Machler J-P, Birrer M, Honegger J, Wetter R, Wörner HJ, Van Bokhoven JA (2013) A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions. Rev Sci Instrum 84:073904CrossRefGoogle Scholar
  35. 35.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  36. 36.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  37. 37.
    Hermann K, Pettersson LGM, Casida ME, Daul C, Goursot A, Koester A, Proynov E, St-Amant A, Salahub DR, Carravetta V, Duarte A, Godbout N, Guan J, Jamorski C, Leboeuf M, Leetmaa M, Nyberg M, Pedocchi L, Sim F, Triguero L, Vela A (2005) StoBe-deMon, deMon Software. Stockholm, BerlinGoogle Scholar
  38. 38.
    Weingarth D, Czekaj I, Fei Z, Foelske A, Dyson P, Wokaun A, Kötz R (2012) Electrochemical stability of imidazolium based ionic liquids containing cyano groups in the anion: a cyclic voltammetry, XPS and DFT study. J Electrochem Soc 159:H611–H615CrossRefGoogle Scholar
  39. 39.
    Nicosia D, Czekaj I, Kröcher O (2008) Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: part II. Characterization study of the effect of alkali and alkaline earth metals. Appl Catal B 77:228–236CrossRefGoogle Scholar
  40. 40.
    Tenney CM, Cygan RT (2013) Analysis of molecular clusters in simulations of lithium-ion battery electrolytes. J Phys Chem C 117:24673–24684CrossRefGoogle Scholar
  41. 41.
    Olivieri G, Goel A, Kleibert A, Brown MA (2015) Effect of X-ray spot size on liquid jet photoemission spectroscopy. J Synchrotron Radiat 22:1528–1530CrossRefGoogle Scholar
  42. 42.
    Solvent vapor pressure, EC: 0.01 mmHg (25 °C), DMC: 18 mmHg (21 °C) and DMSO: 0.4 mmHg (20 °C) http://pubchem.ncbi.nlm.nih.gov Open chemistry database
  43. 43.
    Siegbahn H, Siegbahn K (1973) ESCA applied to liquids. J Electron Spectrosc Relat Phenom 2:319–325CrossRefGoogle Scholar
  44. 44.
    Gelius U, Svensson S, Siegbahn H, Basilier E, Faxalv A, Siegbahn K (1974) Chem Phys Lett 28:1CrossRefGoogle Scholar
  45. 45.
    Wiklund M, Jaworowski A, Strisland F, Beutler A, Sandell A, Nyholm R, Sorensen SL, Andersen JN (1998) Vibrational fine structure in the C 1s photoemission spectrum of the methoxy species chemisorbed on Cu(100). Surf Sci 418:210–218CrossRefGoogle Scholar
  46. 46.
    Laurence C, Gal JF (2010) Lewis basicity and affinity scales data and measurement (chapter 2). Wiley, HobokenGoogle Scholar
  47. 47.
    Skarmoutsos I, Ponnuchamy V, Vetere V, Mossa S (2015) Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes. J Phys Chem C 119:4502–4515CrossRefGoogle Scholar
  48. 48.
    Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/LixMn2O4 rechargeable cells. J Electrochem Soc 144:3342–3348CrossRefGoogle Scholar
  49. 49.
    Weingarth D, Foelske-Schmitz A, Wokaun A, Kötz R (2011) In situ electrochemical XPS study of the Pt/[EMIM][BF4] system. Electrochem Commun 11:619–622CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Electrochemistry LaboratoryPaul Scherrer InstitutVilligenSwitzerland
  2. 2.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyCracowPoland
  3. 3.Laboratory for Surface Science and Technology, Department of MaterialsETH ZürichZurichSwitzerland
  4. 4.Department of Chemistry and Applied BiosciencesETH ZürichZurichSwitzerland

Personalised recommendations