Topics in Catalysis

, Volume 59, Issue 1, pp 73–85 | Cite as

Elucidating Zeolite Deactivation Mechanisms During Biomass Catalytic Fast Pyrolysis from Model Reactions and Zeolite Syntheses

  • Mengze Xu
  • Calvin Mukarakate
  • David J. Robichaud
  • Mark R. Nimlos
  • Ryan M. Richards
  • Brian G. Trewyn
Original Paper


Zeolites are crystalline microporous aluminosilicates that have numerous applications in industry, specifically in catalysis, separation and adsorption. Zeolites catalyze the conversion of biomass-derived pyrolysis vapors into hydrocarbons; however, zeolites frequently suffer from rapid deactivation under pyrolysis conditions. Methanol-to-hydrocarbon processes are closely related to biomass upgrading reactions and several proposed mechanisms are discussed to provide mechanistic insight for biomass upgrading with zeolites. Syntheses of novel zeolites have potential to relieve deactivation factors including mass diffusion limitations of bulky molecules and accumulation of carbonaceous coke on the catalyst surface. Catalytic activity of conventional zeolites is presented to provide insights to evaluate the novel zeolites. Recent advances of the new zeolite structures are also presented in the context of potential future directions for the field.


Biomass pyrolysis Zeolite deactivation Microporous and mesoporous materials Methanol to hydrocarbon 



We acknowledge the financial support from the U.S. Department of Energy under sub-contract No. UGA-0-41025-40 with the National Renewable Energy Laboratory. NREL co-authors would like to acknowledge support through the U.S. Department of Energy’s Bioenergy Technologies Office (DOE-BETO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.


  1. 1.
    Jiang J, Yu J, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49:3120–3145CrossRefGoogle Scholar
  2. 2.
    Marcilly C (2003) Present status and future trends in catalysis for refining and petrochemicals. J Catal 216:47–62CrossRefGoogle Scholar
  3. 3.
    Vermeiren W, Gilson JP (2009) Impact of zeolites on the petroleum and petrochemical industry. Top Catal 52:1131–1161CrossRefGoogle Scholar
  4. 4.
    Jacobs PA, Dusselier M, Sels BF (2014) Will zeolite-based catalysis be as relevant in future biorefineries as in crude oil refineries? Angew Chem Int Ed 53:8621–8626CrossRefGoogle Scholar
  5. 5.
    Davis ME (1997) The quest for extra-large pore, crystalline molecular sieves. Chemistry 3:1745–1750CrossRefGoogle Scholar
  6. 6.
    Davis ME, Hathaway PE, Montes C (1989) VPI-5, AIPO4-8, and MCM-9—similarities and differences. Zeolites 9:436–439CrossRefGoogle Scholar
  7. 7.
    Meier WM, Baerlocher C (1999) Molecular sieves, vol 2. Springer, BerlinGoogle Scholar
  8. 8.
    Viswanathan B, Sivasanker S, Ramaswamy AV (2002) Catalysis: principles and applications. Narosa Publishing House, New DelhiGoogle Scholar
  9. 9.
    Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66CrossRefGoogle Scholar
  10. 10.
    Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 Years with current technologies. Science (Wash) 305:968–972CrossRefGoogle Scholar
  11. 11.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science (Wash) 311:484–489CrossRefGoogle Scholar
  12. 12.
    Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  13. 13.
    Dapsens PY, Mondelli C, Perez-Ramirez J (2012) Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catal 2:1487–1499CrossRefGoogle Scholar
  14. 14.
    Bridgwater AV (1999) An introduction to fast pyrolysis of biomass for fuels and chemicals. Fast Pyrol Biomass 1–13Google Scholar
  15. 15.
    Mukarakate C, Zhang X, Stanton AR, Robichaud DJ, Ciesielski PN, Malhotra K, Donohoe BS, Gjersing E, Evans RJ, Heroux DS, Richards R, Iisa K, Nimlos MR (2014) Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors. Green Chem 16:1444–1461CrossRefGoogle Scholar
  16. 16.
    Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–1815CrossRefGoogle Scholar
  17. 17.
    Zhang H, Xiao R, Huang H, Xiao G (2008) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100:1428–1434CrossRefGoogle Scholar
  18. 18.
    Hua ZL, Zhou J, Shi JL (2011) Recent advances in hierarchically structured zeolites: synthesis and material performances. Chem Commun (Cambridge) 47:10536–10547CrossRefGoogle Scholar
  19. 19.
    Guisnet M, Costa L, Ribeiro FR (2009) Prevention of zeolite deactivation by coking. J Mol Catal A 305:69–83CrossRefGoogle Scholar
  20. 20.
    Bordiga S, Regli L, Cocina D, Lamberti C, Bjorgen M, Lillerud KP (2005) Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: comparison with H-SAPO-34. J Phys Chem B 109:2779–2784CrossRefGoogle Scholar
  21. 21.
    Guisnet M, Magnoux P (2001) Organic chemistry of coke formation. Appl Catal A 212:83–96CrossRefGoogle Scholar
  22. 22.
    Koempel H, Liebner W (2007) Lurgi’s methanol to propylene (MTP (R)) report on a successful commercialisation. In: Natural Gas Conversion Viii, Proceedings of the 8th Natural Gas Conversion Symposium, vol 167, pp 261–267Google Scholar
  23. 23.
    Martins GAV, Berlier G, Coluccia S, Pastore HO, Superti GB, Gatti G, Marchese L (2007) Revisiting the nature of the acidity in chabazite-related silicoaluminophosphates: combined FTIR and 29Si MAS NMR study. J Phys Chem C 111:330–339CrossRefGoogle Scholar
  24. 24.
    Paze C, Bordiga S, Lamberti C, Salvalaggio M, Zecchina A, Bellussi G (1997) Acidic properties of H-β zeolite as probed by bases with proton affinity in the 118-204 kcal mol-1 range: a FTIR investigation. J Phys Chem B 101:4740–4751CrossRefGoogle Scholar
  25. 25.
    Zecchina A, Bordiga S, Vitillo JG, Ricchiardi G, Lamberti C, Spoto G, Bjorgen M, Lillerud KP (2005) Liquid hydrogen in protonic chabazite. J Am Chem Soc 127:6361–6366CrossRefGoogle Scholar
  26. 26.
    Zecchina A, Spoto G, Bordiga S (2005) Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. Phys Chem Chem Phys 7:1627–1642CrossRefGoogle Scholar
  27. 27.
    Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831CrossRefGoogle Scholar
  28. 28.
    Bibby DM, Howe RF, McLellan GD (1992) Coke formation in high-silica zeolites. Appl Catal A 93:1–34CrossRefGoogle Scholar
  29. 29.
    Bibby DM, Milestone NB, Patterson JE, Aldridge LP (1986) Coke formation in zeolite ZSM-5. J Catal 97:493–502CrossRefGoogle Scholar
  30. 30.
    Hemelsoet K, Van der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V (2013) Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14:1526–1545CrossRefGoogle Scholar
  31. 31.
    Ilias S, Bhan A (2013) Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3:18–31CrossRefGoogle Scholar
  32. 32.
    Marcus David M, McLachlan Kelly A, Wildman Mark A, Ehresmann Justin O, Kletnieks Philip W, Haw James F (2006) Experimental evidence from H/D exchange studies for the failure of direct C-C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34. Angew Chem Int Ed 45:3133–3136CrossRefGoogle Scholar
  33. 33.
    Marcus DM, Hayman MJ, Blau YM, Guenther DR, Ehresmann JO, Kletnieks PW, Haw JF (2006) Mechanistically significant details of the H/D exchange reactions of propene over acidic zeolite catalysts. Angew Chem Int Ed 45:1933–1935CrossRefGoogle Scholar
  34. 34.
    Jiang Y, Wang W, Reddy Marthala VR, Huang J, Sulikowski B, Hunger M (2006) Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. J Catal 238:21–27CrossRefGoogle Scholar
  35. 35.
    Lo CS, Radhakrishnan R, Trout BL (2005) Application of transition path sampling methods in catalysis: a new mechanism for C-C bond formation in the methanol coupling reaction in chabazite. Catal Today 105:93–105CrossRefGoogle Scholar
  36. 36.
    Wang W, Buchholz A, Seiler M, Hunger M (2003) Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J Am Chem Soc 125:15260–15267CrossRefGoogle Scholar
  37. 37.
    Wang W, Hunger M (2008) Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc Chem Res 41:895–904CrossRefGoogle Scholar
  38. 38.
    Wang W, Jiang Y, Hunger M (2006) Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal Today 113:102–114CrossRefGoogle Scholar
  39. 39.
    Dessau RM (1986) On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins. J Catal 99:111–116CrossRefGoogle Scholar
  40. 40.
    Dessau RM, LaPierre RB (1982) On the mechanism of methanol conversion to hydrocarbons over HZSM-5. J Catal 78:136–141CrossRefGoogle Scholar
  41. 41.
    Stocker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48CrossRefGoogle Scholar
  42. 42.
    Dahl IM, Kolboe S (1993) On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 20:329–336CrossRefGoogle Scholar
  43. 43.
    Dahl IM, Kolboe S (1994) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34. 1. Isotopic labeling studies of the reaction of ethene with methanol. J Catal 149:458–464CrossRefGoogle Scholar
  44. 44.
    Dahl IM, Kolboe S (1996) On the reaction mechanism for hydrocarbon formation from over SAPO-34. 2. Isotopic labeling studies of the Co-reaction of propene and methanol. J Catal 161:304–309CrossRefGoogle Scholar
  45. 45.
    Arstad B, Kolboe S (2001) Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream. Catal Lett 71:209–212CrossRefGoogle Scholar
  46. 46.
    Arstad B, Kolboe S (2001) The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J Am Chem Soc 123:8137–8138CrossRefGoogle Scholar
  47. 47.
    Fu H, Song W, Haw JF (2001) Polycyclic aromatic formation in HSAPO-34 during methanol-to-olefin catalysis: ex situ characterization after cryogenic grinding. Catal Lett 76:89–94CrossRefGoogle Scholar
  48. 48.
    Haw JF, Marcus DM (2005) Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis. Top Catal 34:41–48CrossRefGoogle Scholar
  49. 49.
    Song W, Fu H, Haw JF (2001) Selective synthesis of methylnaphthalenes in HSAPO-34 cages and their function as reaction centers in methanol-to-olefin catalysis. J Phys Chem B 105:12839–12843CrossRefGoogle Scholar
  50. 50.
    Song W, Fu H, Haw JF (2001) Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 123:4749–4754CrossRefGoogle Scholar
  51. 51.
    Song W, Haw JF, Nicholas JB, Heneghan CS (2000) Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 122:10726–10727CrossRefGoogle Scholar
  52. 52.
    Goguen PW, Xu T, Barich DH, Skloss TW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J Am Chem Soc 120:2650–2651CrossRefGoogle Scholar
  53. 53.
    Haw JF (2002) Zeolite acid strength and reaction mechanisms in catalysis. Phys Chem Chem Phys 4:5431–5441CrossRefGoogle Scholar
  54. 54.
    Haw JF, Nicholas JB, Song W, Deng F, Wang Z, Xu T, Heneghan CS (2000) Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc 122:4763–4775CrossRefGoogle Scholar
  55. 55.
    Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36:317–326CrossRefGoogle Scholar
  56. 56.
    Bjorgen M, Bonino F, Kolboe S, Lillerud K-P, Zecchina A, Bordiga S (2003) Spectroscopic evidence for a persistent benzenium cation in zeolite H-Beta. J Am Chem Soc 125:15863–15868CrossRefGoogle Scholar
  57. 57.
    Bjorgen M, Olsbye U, Kolboe S (2003) Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion. J Catal 215:30–44CrossRefGoogle Scholar
  58. 58.
    Bjorgen M, Olsbye U, Petersen D, Kolboe S (2004) The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J Catal 221:1–10CrossRefGoogle Scholar
  59. 59.
    Bjorgen M, Olsbye U, Svelle S, Kolboe S (2004) Conversion of methanol to hydrocarbons: the reactions of the heptamethylbenzenium cation over zeolite H-Beta. Catal Lett 93:37–40CrossRefGoogle Scholar
  60. 60.
    Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjorgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation Is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771CrossRefGoogle Scholar
  61. 61.
    Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249:195–207CrossRefGoogle Scholar
  62. 62.
    Schulz H (2010) “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catal Today 154:183–194CrossRefGoogle Scholar
  63. 63.
    Wang QL, Giannetto G, Guisnet M (1991) Dealumination of zeolites. III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in heptane cracking. J Catal 130:471–482CrossRefGoogle Scholar
  64. 64.
    Niwa M, Sota S, Katada N (2012) Strong bronsted acid site in HZSM-5 created by mild steaming. Catal Today 185:17–24CrossRefGoogle Scholar
  65. 65.
    Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud KP, Svelle S, Olsbye U (2011) Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys Chem Chem Phys 13:2539–2549CrossRefGoogle Scholar
  66. 66.
    Mores D, Stavitski E, Kox MHF, Kornatowski J, Olsbye U, Weckhuysen BM (2008) Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry 14:11320–11327CrossRefGoogle Scholar
  67. 67.
    Chen L-H, Li X-Y, Rooke JC, Zhang Y-H, Yang X-Y, Tang Y, Xiao F-S, Su B-L (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem 22:17381–17403CrossRefGoogle Scholar
  68. 68.
    Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. J Incl Phenom Mol Recognit Chem 21:47–78Google Scholar
  69. 69.
    Burton AW, Zones SI, Elomari S (2005) The chemistry of phase selectivity in the synthesis of high-silica zeolites. Curr Opin Colloid Interface Sci 10:211–219CrossRefGoogle Scholar
  70. 70.
    Burton AW, Zones SI (2007) Organic molecules in zeolite synthesis: their preparation and structure-directing effects. Stud Surf Sci Catal 168:137–179CrossRefGoogle Scholar
  71. 71.
    Barrer RM, Denny PJ (1961) Hydrothermal chemistry of the silicates. IX. Nitrogenous aluminosilicates. J Chem Soc 971–982Google Scholar
  72. 72.
    Diaz-Cabanas MJ, Camblor MA, Liu Z, Ohsuna T, Terasaki O (2002) Zeolite syntheses using linear diquats of varying length in fluoride media. The synthesis of ITQ-8, ITQ-10, ITQ-14 and high silica Nu-87. J Mater Chem 12:249–257CrossRefGoogle Scholar
  73. 73.
    Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed 52:13880–13889CrossRefGoogle Scholar
  74. 74.
    Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature (London) 431:287–290CrossRefGoogle Scholar
  75. 75.
    Moliner M, Gonzalez J, Portilla MT, Willhammar T, Rey F, Llopis FJ, Zou X, Corma A (2011) A New aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. J Am Chem Soc 133:9497–9505CrossRefGoogle Scholar
  76. 76.
    Estermann M, McCusker LB, Baerlocher C, Merrouche A, Kessler H (1991) A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature (Lond) 352:320–323CrossRefGoogle Scholar
  77. 77.
    Plevert J, Gentz TM, Laine A, Li H, Young VG, Yaghi OM, O’Keeffe M (2001) A flexible germanate structure containing 24-ring channels and with very low framework density. J Am Chem Soc 123:12706–12707CrossRefGoogle Scholar
  78. 78.
    Zhou Y, Zhu H, Chen Z, Chen M, Xu Y, Zhang H, Zhao D (2001) A large 24-membered-ring germanate zeolite-type open-framework structure with three-dimensional intersecting channels. Angew Chem Int Ed 40:2166–2168CrossRefGoogle Scholar
  79. 79.
    Brunner GO, Meier WM (1989) Framework density distribution of zeolite-type tetrahedral nets. Nature (London) 337:146–147CrossRefGoogle Scholar
  80. 80.
    Cheetham T, Fjellvag H, Gier TE, Kongshaug KO, Lillerud KP, Stucky GD (2001) Very open microporous materials: from concept to reality. Stud Surf Sci Catal 135:788–795Google Scholar
  81. 81.
    Conradsson T, Dadachov MS, Zou XD (2000) Synthesis and structure of (Me3 N)6[Ge32O64]·(H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous Mesoporous Mater 41:183–191CrossRefGoogle Scholar
  82. 82.
    Li H, Yaghi OM (1998) Transformation of germanium dioxide to microporous germanate 4-connected nets. J Am Chem Soc 120:10569–10570CrossRefGoogle Scholar
  83. 83.
    Corma A, Diaz-Cabanas MJ, Jorda JL, Martinez C, Moliner M (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature (Lond) 443:842–845CrossRefGoogle Scholar
  84. 84.
    Moliner M, Diaz-Cabanas MJ, Fornes V, Martinez C, Corma A (2008) Synthesis methodology, stability, acidity, and catalytic behavior of the 18 × 10 member ring pores ITQ-33 zeolite. J Catal 254:101–109CrossRefGoogle Scholar
  85. 85.
    Sun J, Bonneau C, Cantin A, Corma A, Diaz-Cabanas MJ, Moliner M, Zhang D, Li M, Zou X (2009) The ITQ-37 mesoporous chiral zeolite. Nature (London) 458:1154–1157CrossRefGoogle Scholar
  86. 86.
    Gao F, Jaber M, Bozhilov K, Vicente A, Fernandez C, Valtchev V (2009) Framework stabilization of Ge-rich zeolites via postsynthesis alumination. J Am Chem Soc 131:16580–16586CrossRefGoogle Scholar
  87. 87.
    Roth WJ, Shvets OV, Shamzhy M, Chlubna P, Kubu M, Nachtigall P, Cejka J (2011) Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture. J Am Chem Soc 133:6130–6133CrossRefGoogle Scholar
  88. 88.
    Martinez-Franco R, Moliner M, Yun Y, Sun J, Wan W, Zou X, Corma A (2013) Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc Natl Acad Sci USA 110:3749–3754CrossRefGoogle Scholar
  89. 89.
    Dorset DL, Strohmaier KG, Kliewer CE, Corma A, Diaz-Cabanas MJ, Rey F, Gilmore CJ (2008) Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater 20:5325–5331CrossRefGoogle Scholar
  90. 90.
    Dorset DL, Kennedy GJ, Strohmaier KG, Diaz-Cabanas MJ, Rey F, Corma A (2006) P-derived organic cations as structure-directing agents: synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J Am Chem Soc 128:8862–8867CrossRefGoogle Scholar
  91. 91.
    Corma A, Diaz-Cabanas MJ, Jorda JL, Rey F, Sastre G, Strohmaier KG (2008) A Zeolitic structure (ITQ-34) with connected 9- and 10-ring channels obtained with phosphonium cations as structure directing agents. J Am Chem Soc 130:16482–16483CrossRefGoogle Scholar
  92. 92.
    Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science (Wash) 336:1684–1687CrossRefGoogle Scholar
  93. 93.
    Simancas R, Dari D, Velamazan N, Navarro MT, Cantin A, Jorda JL, Sastre G, Corma A, Rey F (2010) Modular organic structure-directing agents for the synthesis of zeolites. Science (Wash) 330:1219–1222CrossRefGoogle Scholar
  94. 94.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature (Lond) 359:710–712CrossRefGoogle Scholar
  95. 95.
    Zhao D, Feng J, Huo Q, Melosh N, Frederickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science (Wash) 279:548–552CrossRefGoogle Scholar
  96. 96.
    Corma A, Fornes V, Diaz U (2001) ITQ-18 a new delaminated stable zeolite. Chem Commun (Cambridge, UK) 24:2642–2643CrossRefGoogle Scholar
  97. 97.
    Schmidt I, Boisen A, Gustavsson E, Sthl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418CrossRefGoogle Scholar
  98. 98.
    Shi Y, Li X, Hu J, Lu J, Ma Y, Zhang Y, Tang Y (2011) Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. J Mater Chem 21:16223–16230CrossRefGoogle Scholar
  99. 99.
    Tao Y, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125:6044–6045CrossRefGoogle Scholar
  100. 100.
    Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z (2008) Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chem Mater 20:1134–1139CrossRefGoogle Scholar
  101. 101.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature (London, UK) 461:246–249CrossRefGoogle Scholar
  102. 102.
    Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science (Washington, DC) 333:328–332CrossRefGoogle Scholar
  103. 103.
    Lee HW, Park SH, Jeon J-K, Ryoo R, Kim W, Suh DJ, Park Y-K (2014) Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets. Catal Today 232:119–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mengze Xu
    • 1
  • Calvin Mukarakate
    • 2
  • David J. Robichaud
    • 2
  • Mark R. Nimlos
    • 2
  • Ryan M. Richards
    • 1
  • Brian G. Trewyn
    • 1
  1. 1.Department of Chemistry and GeochemistryColorado School of MinesGoldenUSA
  2. 2.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations