Topics in Catalysis

, Volume 59, Issue 1, pp 46–54 | Cite as

Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol

  • Karthikeyan K. Ramasamy
  • Michel Gray
  • Heather Job
  • Daniel Santosa
  • Xiaohong Shari Li
  • Arun Devaraj
  • Abhi Karkamkar
  • Yong Wang
Original Paper

Abstract

In the base catalyzed ethanol condensation reactions, the calcined MgO–Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristics of the hydrotalcite material treated between catalytically relevant temperatures 450 and 800 °C have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800 °C. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 % with 1-butanol selectivity of 50 % was achieved for the 600 °C calcined hydrotalcite material.

Keywords

Ethanol condensation Guerbet Hydrotalcite Butanol Mixed oxide MgO–Al2O3 

References

  1. 1.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090. doi:10.1021/cs4011343 CrossRefGoogle Scholar
  2. 2.
    Tews IJ, Jones SB, Santosa DM, Dai Z, Ramasamy K, Zhu Y (2010) A survey of opportunities for microbial conversion of biomass to hydrocarbon compatible fuels. vol PNNL-19704. PNNL, RichlandGoogle Scholar
  3. 3.
    Ramasamy KK, Wang Y (2014) Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions. Catal Today 237:89–99. doi:10.1016/j.cattod.2014.02.044 CrossRefGoogle Scholar
  4. 4.
    Ramasamy KK, Zhang H, Sun JM, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110. doi:10.1016/j.cattod.2014.01.037 CrossRefGoogle Scholar
  5. 5.
    Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247. doi:10.1016/j.ijhydene.2007.04.038 CrossRefGoogle Scholar
  6. 6.
    Angelici C, Weckhuysen BM, Bruijnincx PC (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chem Sus Chem 6(9):1595–1614. doi:10.1002/cssc.201300214 CrossRefGoogle Scholar
  7. 7.
    Ramasamy KK, Wang Y (2013) Thermochemical conversion fermentation-derived oxygenates to fuels. In: Zhang B, Wang Y (eds) Biomass processing, conversion and biorefinery. Nova Science Publishers Inc, New York, pp 289–300Google Scholar
  8. 8.
    Zheng J, Tashiro Y, Wang Q, Sonomoto K (2015) Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. J Biosci Bioeng 119(1):1–9. doi:10.1016/j.jbiosc.2014.05.023 CrossRefGoogle Scholar
  9. 9.
    Ndou AS, Plint N, Coville NJ (2003) Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A 251(2):337–345. doi:10.1016/s0926-860x(03)00363-6 CrossRefGoogle Scholar
  10. 10.
    Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3(7):1588–1600. doi:10.1021/cs400292f CrossRefGoogle Scholar
  11. 11.
    Carvalho DL, Borges LEP, Appel LG, Ramírez de la Piscina P, Homs N (2013) In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts. Catal Today 213:115–121. doi:10.1016/j.cattod.2013.03.034 CrossRefGoogle Scholar
  12. 12.
    Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry 15(16):3920–3935. doi:10.1002/chem.200900060 CrossRefGoogle Scholar
  13. 13.
    Roelofs JCAA, Bokhoven JAV, Dillen AJV, John WG, Jong KPD (2002) The thermal decomposition of Mg ± Al hydrotalcites: effects of interlayer anions and characteristics of the final structure. Chem Eur J 8(24):5571–5579CrossRefGoogle Scholar
  14. 14.
    Xie W, Peng H, Chen L (2006) Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Catal A: Chem 246(1–2):24–32. doi:10.1016/j.molcata.2005.10.008 CrossRefGoogle Scholar
  15. 15.
    Chimentao R, Abello S, Medina F, Llorca J, Sueiras J, Cesteros Y, Salagre P (2007) Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. J Catal 252(2):249–257. doi:10.1016/j.jcat.2007.09.015 CrossRefGoogle Scholar
  16. 16.
    Liu Y, Lotero E, Goodwin JG, Mo X (2007) Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl Catal A 331:138–148. doi:10.1016/j.apcata.2007.07.038 CrossRefGoogle Scholar
  17. 17.
    Shen JY, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. doi:10.1006/jssc.1997.7739 CrossRefGoogle Scholar
  18. 18.
    Rey F, Fornes V, Rojo JM (1992) Thermal-decomposition of hydrotalcites—an infrared and nuclear-magnetic-resonance spectroscopic study. J Chem Soc Faraday Trans 88(15):2233–2238. doi:10.1039/Ft9928802233 CrossRefGoogle Scholar
  19. 19.
    Cosimo JID, D´ıez VK, Xu M, Iglesia E, Apesteguia CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510CrossRefGoogle Scholar
  20. 20.
    Kuśtrowski P, Chmielarz L, Bożek E, Sawalha M, Roessner F (2004) Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater Res Bull 39(2):263–281. doi:10.1016/j.materresbull.2003.09.032 CrossRefGoogle Scholar
  21. 21.
    Hibino T, Tsunashima A (1997) Formation of spinel from a hydrotalcite-like compound at low temperature: reaction between edges of crystallites. Clays Clay Miner 45(6):842–853. doi:10.1346/Ccmn.1997.0450608 CrossRefGoogle Scholar
  22. 22.
    Akitt JW (1989) Multinuclear studies of aluminum compounds. Prog Nucl Magn Reson Spectrosc 21:1–149. doi:10.1016/0079-6565(89)80001-9 CrossRefGoogle Scholar
  23. 23.
    MacKenzie KJD, Meinhold RH, Sherriff BL, Xu Z (1993) 27Al and 25 Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3(12):1263–1269CrossRefGoogle Scholar
  24. 24.
    Park T-J, Choi S-S, Kim Y (2009) 27Al solid-state NMR structural studies of hydrotalcite compounds calcined at different temperatures. Bull Korean Chem Soc 30(1):149–152CrossRefGoogle Scholar
  25. 25.
    Corma A, Fornes V, Rey F (1994) Hydrotalcites as base catalysts—influence of the chemical-composition and synthesis conditions on the dehydrogenation of isopropanol. J Catal 148(1):205–212. doi:10.1006/jcat.1994.1202 CrossRefGoogle Scholar
  26. 26.
    Díez V (2003) Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J Catal 215(2):220–233. doi:10.1016/s0021-9517(03)00010-1 CrossRefGoogle Scholar
  27. 27.
    Erickson KL, Bostrom TE, Frost RL (2005) A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater Lett 59(2–3):226–229. doi:10.1016/j.matlet.2004.08.035 CrossRefGoogle Scholar
  28. 28.
    Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Conversion of biomass-derived small oxygenates over HZSM-5 and its deactivation mechanism. Green Chem 16(2):748–760. doi:10.1039/C3gc41369a CrossRefGoogle Scholar
  29. 29.
    Rao KK, Gravelle M, Valente JS, Fc Figueras (1998) Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions. J Catal 173:115–121CrossRefGoogle Scholar
  30. 30.
    Constantino VRL, Pinnavaia TJ (1994) Structure-reactivity relationships for basic catalysts derived from a Mg2+/A13+/CO layered double hydroxide. Catal Lett 23:361–367CrossRefGoogle Scholar
  31. 31.
    Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22(1):58–64. doi:10.1016/s2095-4956(13)60007-8 CrossRefGoogle Scholar
  32. 32.
    Birky TW, Kozlowski JT, Davis RJ (2013) Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal 298:130–137. doi:10.1016/j.jcat.2012.11.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Karthikeyan K. Ramasamy
    • 1
    • 2
  • Michel Gray
    • 1
  • Heather Job
    • 1
  • Daniel Santosa
    • 1
  • Xiaohong Shari Li
    • 2
  • Arun Devaraj
    • 3
  • Abhi Karkamkar
    • 1
  • Yong Wang
    • 1
    • 2
    • 4
  1. 1.Chemical and Biological Process Development GroupPacific Northwest National LaboratoryRichlandUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA
  3. 3.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  4. 4.The Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA

Personalised recommendations