Topics in Catalysis

, Volume 58, Issue 14–17, pp 1053–1061 | Cite as

Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

  • Raju Poreddy
  • Shunmugavel Saravanamurugan
  • Anders RiisagerEmail author
Original Paper


Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96 %) to the monobenzylated products, ortho/para benzyl anisole, using benzyl alcohol as reagent (anisole/alcohol molar ratio = 28). Analogous reactions with benzyl halides resulted in lower yields of the desired monobenzylated products. The conversion of benzyl alcohol was confirmed to be proportional to the amount of added H-MOR-10, and the linear free-energy relationship relating the conversion of substituted benzyl alcohol and substituent constants as well as the orientation effect of substituents of anisole on the distribution of ortho/para/meta isomers was evaluated.


Solid-acid catalysis Zeolites Benzyl alcohol Aromatic benzylation Substituted anisole 



Financial support from the UNIK research initiative Catalysis for Sustainable Energy funded by the Danish Ministry of Science, Technology and Innovation is gratefully acknowledged.


  1. 1.
    Diaz E, Ordonez S, Vega A, Auroux A, Coca J (2005) Appl Catal A 295:106CrossRefGoogle Scholar
  2. 2.
    Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Biores. Techn. 102:4304–4312CrossRefGoogle Scholar
  3. 3.
    Chu, M.M.-S., Wu, Y., Xiong, L.B., Yang, JP.: 11181456 A2 (1999)Google Scholar
  4. 4.
    Tanabe K, Holderich WF (1999) Appl Catal A 181:399–434CrossRefGoogle Scholar
  5. 5.
    Bokade VV, Yadav GD (2007) J Nat Gas Chem 16:186–192CrossRefGoogle Scholar
  6. 6.
    Olah GA (1973) Friedel–Crafts chemistry. Wiley, New YorkGoogle Scholar
  7. 7.
    Iovel I, Mertins K, Kischel J, Zapf A, Beller M (2005) Angew Chem Int Ed 44:3913CrossRefGoogle Scholar
  8. 8.
    Candu N, Wuttke S, Kemnitz E, Coman SM, Parvulescu VI (2011) Appl Catal A 391:169–174CrossRefGoogle Scholar
  9. 9.
    Okumura K, Tomiyama T, Shirakawa S, Ishida S, Sanada T, Arao M, Niwa M (2011) J Mater Chem 21:229–235CrossRefGoogle Scholar
  10. 10.
    Ramesh Kumar C, Sai Prasad PS, Lingaiah N (2010) Appl Catal A 384:101–106CrossRefGoogle Scholar
  11. 11.
    Ramesh Kumar C, Venkateswara Rao KT, Sai Prasad PS, Lingaiah N (2011) J Mol Catal A: Chem 337:17–24CrossRefGoogle Scholar
  12. 12.
    de La Cruz MHC, Rocha AS, Lachter ER, Forrester AMS, Reis MC, Gil RASS, Caldarelli S, Farias AD, Gonzalez WA (2010) Appl Catal A 386:60–64CrossRefGoogle Scholar
  13. 13.
    Anand C, Sathyaseelan B, Samie L, Beitollahi A, Pradeep Kumar R, Palanichamy M, Murugesan V, Kenawy ER, Al-Deyab SS, Vinu A (2010) Microporous Mesoporous Mater 134:87–92CrossRefGoogle Scholar
  14. 14.
    Al-Hazmi MH, Apblett AW (2011) Catal. Sci Technol 1:621–630Google Scholar
  15. 15.
    Coq B, Gourves V, Figueras F (1993) Appl Catal A 100:69CrossRefGoogle Scholar
  16. 16.
    Chaube VD (2004) Catal Commun 5:321CrossRefGoogle Scholar
  17. 17.
    Jin H, Ansari MB, Jeong EY, Park SE (2012) J Catal 291:55–62CrossRefGoogle Scholar
  18. 18.
    Liu S, Du YCh, Xiao N, Zhang YL, Ji YY, Xia FSh (2008) Chin J Catal 29:468Google Scholar
  19. 19.
    Li Y, Zhang WH, Zhang L, Yang QH, Wei ZB, Li C, Feng Zh C (2008) J Phys Chem B 108:9739CrossRefGoogle Scholar
  20. 20.
    Okumura K, Nishigaki K, Niwa M (2001) Microporous Mesoporous Mater 509:44–45Google Scholar
  21. 21.
    Selvaraj M, Kawi S (2007) Chem Mater 19:509–519CrossRefGoogle Scholar
  22. 22.
    Zhang ZK, Liang YW, Ren QR, Liu HY, Chen YF (2011) Chin J Catal 32:250CrossRefGoogle Scholar
  23. 23.
    Gracia MD, Balu AM, Campelo JM, Luque R, Marinas JM, Romero AA (2009) Appl Catal A 371:85–91CrossRefGoogle Scholar
  24. 24.
    Gracia MJ, Losada E, Luque R, Campelo JM, Luna D, Marinas JM, Romero AA (2008) Appl Catal A 349:148–155CrossRefGoogle Scholar
  25. 25.
    Ramesh Kumar C, Sai Prasad PS, Lingaiah N (2011) J Mol Catal A Chem 350:83–90CrossRefGoogle Scholar
  26. 26.
    C. Ramesh Kumar, K. Jagadeeswaraiah, P. S. Sai Prasad, N. Lingaiah (2012) ChemCatChem. 4:1360-1367CrossRefGoogle Scholar
  27. 27.
    Okumura K, Yamashita K, Hirano M, Niwa M (2005) J Catal 234:300CrossRefGoogle Scholar
  28. 28.
    Rao Y, Trudeau M, Antonelli D (2006) J Am Chem Soc 128:13996–13997CrossRefGoogle Scholar
  29. 29.
    de La Cruz MHC, Abdel-Rehim MA, Rocha AS, da Silva JFC, Faro AC Jr, Lachter ER (2007) Catal Commun 8:1650–1654CrossRefGoogle Scholar
  30. 30.
    Shimizu KI, Miyamoto Y, Satsuma A (2010) ChemCatChem 2:84–91CrossRefGoogle Scholar
  31. 31.
    Saravanamurugan S, Prasetyanto SEA, Park SE (2008) Microporous Mesoporous Mater 112:97–107CrossRefGoogle Scholar
  32. 32.
    Taramasso, T., Pegero, G., Notari, B.: US 4410501 (1983)Google Scholar
  33. 33.
    Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th edn. Elsevier, LondonGoogle Scholar
  34. 34.
    Mielby J, Abildstrøm JO, Ferreras SP, Rasmussen SB, Kegnæs S (2014) J Porous Mater 21:531–537CrossRefGoogle Scholar
  35. 35.
    Paniagua M, Saravanamurugan S, Melian-Rodriguez M, Melero JA, Riisager A (2015) ChemSusChem 8:1088–1094CrossRefGoogle Scholar
  36. 36.
    Wang F, Ueda W (2008) Chem. Commun. 27:3196–3198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Raju Poreddy
    • 1
  • Shunmugavel Saravanamurugan
    • 1
  • Anders Riisager
    • 1
    Email author
  1. 1.Department of Chemistry, Centre for Catalysis and Sustainable ChemistryTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations