Topics in Catalysis

, Volume 58, Issue 14–17, pp 1043–1052 | Cite as

Cerium Oxide Based Catalysts for Wet Air Oxidation of Bisphenol A

  • Anne HeponiemiEmail author
  • Said Azalim
  • Tao Hu
  • Ulla Lassi
Original Paper


Catalytic wet air oxidation of an aqueous solution, bisphenol A (BPA), was carried out at 160 °C and at 20 bar of air in a batch reactor. Silver catalysts (2.5 wt%) prepared by wet impregnation and complexation on commercial CeO2 in addition to Ce0.85Zr0.15O2 and Ce0.2Zr0.8O2 sol–gel mixed oxides were synthesized and used as catalysts in the reaction. Characterizations of the catalysts were performed by using FESEM, XRD, BET, XPS and ICP–OES techniques. Residual BPA concentration was analyzed by using an UV–Vis technique and organic compound content was measured via the total organic carbon method. Commercial CeO2 showed a smaller specific surface area and a larger crystallite size than laboratory prepared Ce–Zr mixed oxides. The highest BPA removal (76 %) was achieved after 3 h with CeO2, Ce0.85Zr0.15O2 and Ag/Ce0.85Zr0.15O2 catalysts revealing that the addition of silver had no effect on the catalytic activity of the pure supports. However, the loading of active metal to the supports by complexation decreased the adsorption of the BPA during the heating period and hence the Ag/Ce0.85Zr0.15O2 prepared via complexation was the most active catalyst with only 1 % adsorption of BPA. Moreover, the activity of the catalysts was not related to the surface area of the samples. According to the ICP–OES analysis of the terminal water samples, leaching of the silver was occurred during oxidation experiments explaining the behavior of Ag catalysts in the reaction.


CWAO BPA Silver Cerium Zirconium XPS 



The authors gratefully acknowledge the Academy of Finland for providing research funding, AOPI project (263397) within the research program for Sustainable Governance of Aquatic Resources (AKVA). Centre of Microscopy and Nanotechnology at the University of Oulu, Finland is also acknowledged for its research facilities in XPS analysis.


  1. 1.
    Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Chemosphere 42:415–418CrossRefGoogle Scholar
  2. 2.
    Fürhacker M, Scharf S, Weber H (2000) Chemosphere 42:751–756CrossRefGoogle Scholar
  3. 3.
    Staples CA, Dorn PB, Klecka GM, O´Block ST, Harris LR (1998) Chemosphere 36(10):2149–2173CrossRefGoogle Scholar
  4. 4.
    Vandenberg LN, Chahoud I, Heindell JJ, Padmanadhan V, Paumgartten FJ, Schoenfelder G (2010) Environ Health Perspect 118(8):1055–1070CrossRefGoogle Scholar
  5. 5.
    Lindhost C, Pedersen KL, Pedersen SN (2000) Aquat Toxicol 48:87–94CrossRefGoogle Scholar
  6. 6.
    Tanaka H, Yakou Y, Takahashi A, Higashitani T, Komori K (2001) Water Sci Technol 43(2):125–132Google Scholar
  7. 7.
    Rosenfeldt EJ, Linden KG (2004) Environ Sci Technol 38:5476–5483CrossRefGoogle Scholar
  8. 8.
    Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Environ Sci Technol 35:2365–2368CrossRefGoogle Scholar
  9. 9.
    Torres RA, Sarantakos G, Combet E, Petrier C, Pulgarin C (2008) J Photochem Photobiol A 199:197–203CrossRefGoogle Scholar
  10. 10.
    Deborde M, Rabouan S, Mazellier P, Duguet J-P, Legube B (2008) Water Res 42:4299–4308CrossRefGoogle Scholar
  11. 11.
    Erjavec B, Kaplan R, Djinović P, Pintar A (2013) Appl Catal B 132–133:342–352CrossRefGoogle Scholar
  12. 12.
    Heponiemi A, Rahikka L, Lassi U, Kuokkanen T (2011) Top Catal 54(16–18):1034–1041CrossRefGoogle Scholar
  13. 13.
    Lin SS, Chen CL, Chang DJ, Chen CC (2002) Water Res 36:3009–3014CrossRefGoogle Scholar
  14. 14.
    Chen IP, Lin SS, Wang CH, Chang L, Chang JS (2004) Appl Catal B 50:49–58CrossRefGoogle Scholar
  15. 15.
    Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B 32:165–204CrossRefGoogle Scholar
  16. 16.
    Yang SX, Zhu WP, Wang JB, Chen ZX (2008) J Hazard Mater 153:1248–1253CrossRefGoogle Scholar
  17. 17.
    Mikulová J, Rossignol J, Barbier J, Mesnard D, Kappenstein C, Duprez D (2007) Appl Catal B 72:1–10CrossRefGoogle Scholar
  18. 18.
    Yang SX, Zhu WP, Jiang ZP, Chen ZX, Wang JB (2006) Appl Surf Sci 252:8499–8505CrossRefGoogle Scholar
  19. 19.
    Triki M, Ksibi Z, Ghorbel A, Medina F (2009) Microporous Mesoporous Mater 117:431–435CrossRefGoogle Scholar
  20. 20.
    Li N, Descorme C, Besson M (2007) Appl Catal B 76:92–100CrossRefGoogle Scholar
  21. 21.
    Mikulová J, Barbier J, Rossignol J, Mesnard D, Duprez D, Kappenstein C (2007) J Catal 251:172–181CrossRefGoogle Scholar
  22. 22.
    Núñez F, Del Angel G, Tzompantzi F, Navarrete J (2011) Ind Eng Chem Res 50:2495–2500CrossRefGoogle Scholar
  23. 23.
    Silva AMT, Marques RRN, Quinta-Ferreira RM (2004) Appl Catal B 47:269–279CrossRefGoogle Scholar
  24. 24.
    Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F (2000) Catal Today 62:379–388CrossRefGoogle Scholar
  25. 25.
    Heponiemi A, Rahikka L, Lassi U, Kuokkanen T (2009) Chem Eng Trans 17:209–221Google Scholar
  26. 26.
    International Centre for Diffraction Data (ICDD) (2013) PDF-4 + powder diffraction database. 12 Campus Boulevard Newton Square, PA 19073-3273, USAGoogle Scholar
  27. 27.
    Alifanti M, Baps B, Blangenois N, Naud J, Grange P, Delmon B (2003) Chem Mater 15:395–403CrossRefGoogle Scholar
  28. 28.
    Mikulová J, Rossignol S, Barbier J Jr, Dubrez D, Kappenstein C (2007) Catal Today 134:185–190CrossRefGoogle Scholar
  29. 29.
    Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) J Electron Spectrosc Relat Phenom 88–91:951–956CrossRefGoogle Scholar
  30. 30.
    Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamotoa T, Suda A, Sugiura M (2002) Catal Today 74:225–234CrossRefGoogle Scholar
  31. 31.
    Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964–4970CrossRefGoogle Scholar
  32. 32.
    Wang X, Hou X, Luan W, Li D, Yao K (2012) Appl Surf Sci 258:8241–8246CrossRefGoogle Scholar
  33. 33.
    Gao XY, Wang SY, Li J, Zheng YX, Zhang RJ, Zhou P, Yang YM, Chen LY (2004) Thin Solid Films 455–456:438–442CrossRefGoogle Scholar
  34. 34.
    Reddy BM, Khan A (2003) Langmuir 19:3025–3030CrossRefGoogle Scholar
  35. 35.
    Silva AMT, Castelo-Branco IM, Quinta-Ferreira RM, Levec J (2003) Chem Eng Sci 58:963–970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anne Heponiemi
    • 1
    Email author
  • Said Azalim
    • 1
  • Tao Hu
    • 1
  • Ulla Lassi
    • 1
    • 2
  1. 1.Research Unit of Sustainable ChemistryUniversity of OuluOuluFinland
  2. 2.Kokkola University Consortium ChydeniusKokkolaFinland

Personalised recommendations