Topics in Catalysis

, Volume 58, Issue 12–13, pp 699–707 | Cite as

EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation

Original Paper

Abstract

Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H+ and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN ligands of the H-cluster, tracing 57Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe–S cluster in HydG, and isotopic labeling of the CN ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

Keywords

Hydrogenase EPR spectroscopy Radical SAM enzymes Fe–S cluster enzymes 

Notes

Acknowledgments

We gratefully acknowledge funding from the National Institute of General Medical Sciences of the National Institutes of Health (F32GM111025 to D.L.M.S. and GM104543 to R.D.B.).

References

  1. 1.
    Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114(8):4081–4148CrossRefGoogle Scholar
  2. 2.
    Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107(10):4366–4413CrossRefGoogle Scholar
  3. 3.
    Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282(5395):1853–1858CrossRefGoogle Scholar
  4. 4.
    Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7(1):13–23CrossRefGoogle Scholar
  5. 5.
    Broderick JB, Byer AS, Duschene KS, Duffus BR, Betz JN, Shepard EM, Peters JW (2014) J Biol Inorg Chem 19(6):747–757CrossRefGoogle Scholar
  6. 6.
    Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB (2014) Biochemistry 53(25):4090–4104CrossRefGoogle Scholar
  7. 7.
    Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Chem Rev 114(8):4229–4317CrossRefGoogle Scholar
  8. 8.
    Duffus BR, Hamilton TL, Shepard EM, Boyd ES, Peters JW, Broderick JB (2012) BBA 1824(11):1254–1263Google Scholar
  9. 9.
    Peters JW, Broderick JB (2012) Annu Rev Biochem 81(1):429–450CrossRefGoogle Scholar
  10. 10.
    Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Structure 19(8):1038–1052CrossRefGoogle Scholar
  11. 11.
    Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) J Biol Chem 279(24):25711–25720CrossRefGoogle Scholar
  12. 12.
    Mulder DW, Ortillo DO, Gardenghi DJ, Naumov AV, Ruebush SS, Szilagyi RK, Huynh B, Broderick JB, Peters JW (2009) Biochemistry 48(26):6240–6248CrossRefGoogle Scholar
  13. 13.
    Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2011) Nature 465(7295):248–251CrossRefGoogle Scholar
  14. 14.
    Rubach JK, Brazzolotto X, Gaillard J, Fontecave M (2005) FEBS Lett 579(22):5055–5060CrossRefGoogle Scholar
  15. 15.
    Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB (2015) Biochemistry 54(9):1807–1818CrossRefGoogle Scholar
  16. 16.
    Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C, Atta M, Fontecave M, Fontecilla-Camps JC (2008) J Biol Chem 283(27):18861–18872CrossRefGoogle Scholar
  17. 17.
    Nicolet Y, Amara P, Mouesca J-M, Fontecilla-Camps JC (2009) Proc Natl Acad Sci USA 106(35):14867–14871CrossRefGoogle Scholar
  18. 18.
    Nicolet Y, Rohac R, Martin L, Fontecilla-Camps JC (2013) Proc Natl Acad Sci USA 110(18):7188–7192CrossRefGoogle Scholar
  19. 19.
    Swanson KD, Duffus BR, Beard TE, Peters JW, Broderick JB (2011) Eur J Inorg Chem 2011(7):935–947CrossRefGoogle Scholar
  20. 20.
    Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Proc Natl Acad Sci USA 107(23):10448–10453CrossRefGoogle Scholar
  21. 21.
    Vallese F, Berto P, Ruzzene M, Cendron L, Sarno S, De Rosa E, Giacometti GM, Costantini P (2012) J Biol Chem 287(43):36544–36555CrossRefGoogle Scholar
  22. 22.
    Brazzolotto X, Rubach JK, Gaillard J, Gambarelli S, Atta M, Fontecave M (2006) J Biol Chem 281(2):769–774CrossRefGoogle Scholar
  23. 23.
    Kuchenreuther JM, Britt RD, Swartz JR (2012) PLoS One 7(9):e45850CrossRefGoogle Scholar
  24. 24.
    Berggren G, Garcia-Serres R, Brazzolotto X, Clemancey M, Gambarelli S, Atta M, Latour J-M, Hernandez HL, Subramanian S, Johnson MK, Fontecave M (2013) J Biol Inorg Chem 19(1):75–84CrossRefGoogle Scholar
  25. 25.
    Berto P, Di Valentin M, Cendron L, Vallese F, Albertini M, Salvadori E, Giacometti GM, Carbonera D, Costantini P (2012) BBA 1817(12):2149–2157Google Scholar
  26. 26.
    Joshi N, Shepard EM, Byer AS, Swanson KD, Broderick JB, Peters JW (2012) FEBS Lett 586(22):3939–3943CrossRefGoogle Scholar
  27. 27.
    Czech I, Silakov A, Lubitz W, Happe T (2010) FEBS Lett 584(3):638–642CrossRefGoogle Scholar
  28. 28.
    Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M (2011) FEBS Lett 585(1):225–230CrossRefGoogle Scholar
  29. 29.
    Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 498(7456):66–69CrossRefGoogle Scholar
  30. 30.
    Shepard EM, Duffus BR, George SJ, McGlynn SE, Challand MR, Swanson KD, Roach PL, Cramer SP, Peters JW, Broderick JB (2010) J Am Chem Soc 132(27):9247–9249CrossRefGoogle Scholar
  31. 31.
    Nicolet Y, Martin L, Tron C, Fontecilla-Camps JC (2010) FEBS Lett 584(19):4197–4202CrossRefGoogle Scholar
  32. 32.
    Driesener RC, Duffus BR, Shepard EM, Bruzas IR, Duschene KS, Coleman NJR, Marrison APG, Salvadori E, Kay CWM, Peters JW, Broderick JB, Roach PL (2013) Biochemistry 52(48):8696–8707CrossRefGoogle Scholar
  33. 33.
    Kuchenreuther JM, Myers WK, Stich TA, George SJ, Nejatyjahromy Y, Swartz JR, Britt RD (2013) Science 342(6157):472–475CrossRefGoogle Scholar
  34. 34.
    Kuchenreuther JM, Myers WK, Suess DLM, Stich TA, Pelmenschikov V, Shiigi S, Cramer SP, Swartz JR, Britt RD, George SJ (2014) Science 343(6169):424–427CrossRefGoogle Scholar
  35. 35.
    Kuchenreuther JM, George SJ, Grady-Smith CS, Cramer SP, Swartz JR (2011) PLoS One 6(5):e20346CrossRefGoogle Scholar
  36. 36.
    Driesener RC, Challand MR, McGlynn SE, Shepard EM, Boyd ES, Broderick JB, Peters JW, Roach PL (2010) Angew Chem Int Ed 49(9):1687–1690CrossRefGoogle Scholar
  37. 37.
    Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M (2009) FEBS Lett 583(3):506–511CrossRefGoogle Scholar
  38. 38.
    Duffus BR, Ghose S, Peters JW, Broderick JB (2014) J Am Chem Soc 136(38):13086–13089CrossRefGoogle Scholar
  39. 39.
    Roach PL (2011) Curr Opin Chem Biol 15(2):267–275CrossRefGoogle Scholar
  40. 40.
    Challand MR, Martins FT, Roach PL (2010) J Biol Chem 285(8):5240–5248CrossRefGoogle Scholar
  41. 41.
    Kriek M, Martins F, Challand MR, Croft A, Roach PL (2007) Angew Chem Int Ed 46(48):9223–9226CrossRefGoogle Scholar
  42. 42.
    Kriek M, Martins F, Leonardi R, Fairhurst SA, Lowe DJ, Roach PL (2007) J Biol Chem 282(24):17413–17423CrossRefGoogle Scholar
  43. 43.
    Zhang Q, Li Y, Chen D, Yu Y, Duan L, Shen B, Liu W (2011) Nat Chem Biol 7(3):154–160CrossRefGoogle Scholar
  44. 44.
    Nicolet Y, Zeppieri L, Amara P, Fontecilla-Camps JC (2014) Angew Chem Int Ed 53(44):11840–11844CrossRefGoogle Scholar
  45. 45.
    Nicolet Y, Pagnier A, Zeppieri L, Martin L, Amara P, Fontecilla-Camps JC (2014) ChemBioChem 16(3):397–402CrossRefGoogle Scholar
  46. 46.
    Dinis P, Suess DLM, Fox SJ, Harmer JE, Driesener RC, De La Paz L, Swartz JR, Essex JW, Britt RD, Roach PL (2015) Proc Natl Acad Sci USA 112(5):1362–1367CrossRefGoogle Scholar
  47. 47.
    Hoganson CW, Sahlin M, Sjoberg BM, Babcock GT (1996) J Am Chem Soc 118(19):4672–4679CrossRefGoogle Scholar
  48. 48.
    Dole F, Diner BA, Hoganson CW, Babcock GT, Britt RD (1997) J Am Chem Soc 119(47):11540–11541CrossRefGoogle Scholar
  49. 49.
    Kuchenreuther JM, Stapleton JA, Swartz JR (2009) PLoS ONE 4(10):e7565CrossRefGoogle Scholar
  50. 50.
    Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) PLoS One 5(11):e15491CrossRefGoogle Scholar
  51. 51.
    Wang G, Benecky MJ, Huynh BH, Cline JF, Adams M, Mortenson LE, Hoffman BM, Münck E (1984) J Biol Chem 259(23):4328–4331Google Scholar
  52. 52.
    Telser J, Benecky MJ, Adams MW, Mortenson LE, Hoffman BM (1986) J Biol Chem 261(29):13536–13541Google Scholar
  53. 53.
    Telser J, Benecky MJ, Adams MW, Mortenson LE, Hoffman BM (1987) J Biol Chem 262(14):6589–6594Google Scholar
  54. 54.
    Popescu CV, Münck E (1999) J Am Chem Soc 121(34):7877–7884CrossRefGoogle Scholar
  55. 55.
    Pereira AS, Tavares P, Moura I, Moura JJG, Huynh BH (2001) J Am Chem Soc 123(12):2771–2782CrossRefGoogle Scholar
  56. 56.
    Silakov A, Reijerse EJ, Albracht SPJ, Hatchikian EC, Lubitz W (2007) J Am Chem Soc 129(37):11447–11458CrossRefGoogle Scholar
  57. 57.
    Pickett CJ (2014) Science 343(6169):378–379CrossRefGoogle Scholar
  58. 58.
    Hagen WR (1992) In: Cammack R (ed) Advances in Inorganic Chemistry, vol 38. Elsevier, New York, pp 165–222Google Scholar
  59. 59.
    Stoll S, Schweiger A (2006) J Magn Reson 178(1):42–55CrossRefGoogle Scholar
  60. 60.
    Onate YA, Vollmer SJ, Switzer RL, Johnson MK (1989) J Biol Chem 264(31):18386–18391Google Scholar
  61. 61.
    Boll M, Fuchs G, Tilley G, Armstrong FA, Lowe DJ (2000) Biochemistry 39(16):4929–4938CrossRefGoogle Scholar
  62. 62.
    Telser J, Smith ET, Adams MWW, Conover RC, Johnson MK, Hoffman BM (1995) J Am Chem Soc 117(18):5133–5140CrossRefGoogle Scholar
  63. 63.
    Fiedler AT, Brunold TC (2005) Inorg Chem 44(25):9322–9334CrossRefGoogle Scholar
  64. 64.
    Greco C, Bruschi M, De Gioia L, Ryde U (2007) Inorg Chem 46(15):5911–5921CrossRefGoogle Scholar
  65. 65.
    Greco C, Silakov A, Bruschi M, Ryde U, De Gioia L, Lubitz W (2011) Eur J Inorg Chem 2011(7):1043–1049CrossRefGoogle Scholar
  66. 66.
    Myers WK, Stich TA, Suess DLM, Kuchenreuther JM, Swartz JR, Britt RD (2014) J Am Chem Soc 136(35):12237–12240CrossRefGoogle Scholar
  67. 67.
    Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W (2015) Phys Chem Chem Phys 17(7):5421–5430CrossRefGoogle Scholar
  68. 68.
    Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagyi RK (2008) J Am Chem Soc 130(13):4533–4540CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations