Topics in Catalysis

, Volume 58, Issue 10–11, pp 606–612 | Cite as

Rules for Selective Oxidation Exemplified by Methanol Selective Oxidation on Iron Molybdate Catalysts

Original Paper

Abstract

A number of simple rules are proposed which dictate for high selectivity to formaldehyde during methanol oxidation on iron molybdate catalysts. The reaction is of the Mars–van Krevelen type, that is, it is surface lattice oxygen that is the active species. However, we also show that the material is quite a flexible one, in that the bulk oxygen anions become mobile enough at moderate temperatures to exchange rapidly with the surface vacancies that are created during the reaction. Further, and essential to high selectivity, is the fact that Mo is preferentially segregated to the surface layer of the catalyst, with no Fe present there. Finally, it can also be shown that the important oxidation state for the cations at the surface is the highest one (6+ for Mo), with lower oxidation states being detrimental to selectivity. It is likely that these basic rules are also important for a range of other catalytic processes/catalysts.

Keywords

Methanol oxidation Formaldehyde synthesis Iron molybdate Oxidation catalysis 

References

  1. 1.
    Soares APV, Portela MF, Kiennemann A (2004) Catal Revs 47:125CrossRefGoogle Scholar
  2. 2.
    Niwa M, Mizutani M, Takahashi M, Murukami Y (1981) J Catal 70:143Google Scholar
  3. 3.
    Popov B, Pashis A, Shuratova L (1986) Catal Lett 30:1294Google Scholar
  4. 4.
    Soares A, Portela M, Kienneman A, Hilaire L (2003) Chem Eng Sci 58(1315):5Google Scholar
  5. 5.
    Briand LE, Hirt AM, Wachs IE (2001) J Catal 202:268CrossRefGoogle Scholar
  6. 6.
    Ressler T, Timpe O, Neisius T, Find J, Mestl G, Dieterle M, Schlogl R (2000) J Catal 191:75–85CrossRefGoogle Scholar
  7. 7.
    Liberti G, Pernicone N, Soattini S (1972) J Catal 27:52CrossRefGoogle Scholar
  8. 8.
    Machiels CJ, Sleight AW (1982) J Catal 76:238CrossRefGoogle Scholar
  9. 9.
    Groff RP (1984) J Catal 86:215CrossRefGoogle Scholar
  10. 10.
    Glisenti ARK, van Sint Annaland M, Kuipers JAM (2005) Appl Catal A 289:240CrossRefGoogle Scholar
  11. 11.
    Kim TH, Ramachandra B, Choi JS, Saidutta MB, Choo KY, Song S-D, Rhee Y-W (2004) Catal Lett 98:161CrossRefGoogle Scholar
  12. 12.
    Bowker M, Holroyd R, Elliott A, Alouche A, Entwistle C, Toerncrona A (2002) Catal. Letts 83:165–176CrossRefGoogle Scholar
  13. 13.
    House MP, Carley AF, Bowker M (2007) J Catal 252:88–96CrossRefGoogle Scholar
  14. 14.
    Bowker M, Carley AF, House MP (2008) Catal Lett 120:34–39CrossRefGoogle Scholar
  15. 15.
    Bowker M, Holroyd R, House M, Bracey R, Bamroongwongdee C, Shannon M, Carley AF (2008) Topics in Catal. 48:158–165CrossRefGoogle Scholar
  16. 16.
    Söderhjelm E, House MP, Cruise N, Holmberg J, Bowker M, Bovin J-O, Andersson A (2008) Topics in Catal 50:145–155CrossRefGoogle Scholar
  17. 17.
    House MP, Shannon MD, Bowker M (2008) Catal Letts 122:210–213CrossRefGoogle Scholar
  18. 18.
    House MP, Carley AF, Echeverria-Valda R, Bowker M (2008) J Phys Chem C 112:4333–4341CrossRefGoogle Scholar
  19. 19.
    Bowker M, Brookes C, Carley AF, House MP, Kosif MG, Sankar G, Wawata I, Wells PP, Yaseneva P (2013) Phys Chem Chem Phys 15:12056–12067CrossRefGoogle Scholar
  20. 20.
    Brookes C, Wells PP, Cibin G, Dimitratos N, Jones W, Bowker M (2014) ACS Catal 4:243–250CrossRefGoogle Scholar
  21. 21.
    Law D, Bowker M (1991) Catal Today 10(397):7Google Scholar
  22. 22.
    Bowker M, Holroyd R, Elliott A, Alouche A, Entwistle C, Toerncrona A (2002) Catal Letts 83:165–176CrossRefGoogle Scholar
  23. 23.
    Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41CrossRefGoogle Scholar
  24. 24.
    Bowker M, House M, Alshehri A, Brookes C, Gibson E, Wells PP (2015) Catal Struct React 1:95–100CrossRefGoogle Scholar
  25. 25.
    Routray K, Zhou W, Kiely CJ, Grunert W, Wachs IE (2010) J Catal 275:84–98CrossRefGoogle Scholar
  26. 26.
    Allen M, Bowker M (1995) Catal Letts 33:269CrossRefGoogle Scholar
  27. 27.
    Allen M, Poulston S, Bithell E, Goringe M, Bowker M (1996) J Catal 163:204–214CrossRefGoogle Scholar
  28. 28.
    Poulston S, Price NJ, Weeks C, Allen MD, Parlett P, Steinberg M, Bowker M (1998) J Catal 178:658–667CrossRefGoogle Scholar
  29. 29.
    Brookes C, Wells PP, Dimitratos N, Jones W, Gibson EK, Morgan DJ, Cibin G, Nicklin C, Mora-Fonz D, Scanlon D, Catlow CRA, Bowker M (2014) J Phys Chem C 118:26155–26161CrossRefGoogle Scholar
  30. 30.
    Jones A, Poulston S, Bennett R, Bowker M (1997) Surf Sci 380:31–44CrossRefGoogle Scholar
  31. 31.
    Farneth WE, Ohuchi F, Staley R, Chowdhry U, Sleight AW (1985) J Phys Chem 89:2493CrossRefGoogle Scholar
  32. 32.
    Niwa M, Muzitani M, Takahashi M, Murakami Y (1981) J Catal 70(14):22Google Scholar
  33. 33.
    Lafayatis DS, Creten G, Froment GF (1994) Appl Catal A 120:85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  2. 2.Catalysis HubResearch Complex at Harwell (RCaH), Rutherford Appleton LaboratoryHarwellUK

Personalised recommendations