Topics in Catalysis

, Volume 58, Issue 7–9, pp 545–558 | Cite as

Nucleation, Growth, and Robust Synthesis of SPP Zeolite: Effect of Ethanol, Sodium, and Potassium

  • Garrett R. Swindlehurst
  • Prashant Kumar
  • Dandan Xu
  • Saeed M. Alhassan
  • K. Andre Mkhoyan
  • Michael Tsapatsis
Article

Abstract

Self-pillared pentasil (SPP) zeolite is a hierarchically-structured zeolite comprised of single-unit cell thick MFI nanosheets arranged in a “house of cards” structure. The nucleation and growth of SPP proceeds through three phases involving the evolution of precursor amorphous nanoparticles to MFI nanosheets and then rotational intergrowth of sheets to produce the SPP morphology. This paper expands upon an earlier report to extend understanding of nucleation and growth events throughout the entire preparation process, from hydrolysis of the silica source to high conversion to crystals. Common aspects with the extensively investigated clear-sol silicalite-1 system are identified. Evaporation of co-solvent ethanol was found to accelerate the crystallization significantly. Furthermore, robust synthesis of SPP with high density of well-developed single-unit cell domains has been achieved with addition of potassium and sodium to the synthesis sols.

Keywords

Hierarchical Zeolites Intergrowth Nucleation and growth SPP Robust 

Supplementary material

11244_2015_396_MOESM1_ESM.docx (6.2 mb)
Supplementary material 1 (DOCX 6308 kb)

References

  1. 1.
    Burkett SL, Davis ME (1994) Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H–29Si CP MAS NMR. J Phys Chem 98:4647–4653CrossRefGoogle Scholar
  2. 2.
    Burkett SL, Davis ME (1995) Mechanism of structure direction in the synthesis of pure-silica zeolites. 2. Hydrophobic hydration and structural specificity. Chem Mater 7:1453–1463CrossRefGoogle Scholar
  3. 3.
    Burkett SL, Davis ME (1995) Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chem Mater 7:920–928CrossRefGoogle Scholar
  4. 4.
    Tsapatsis M, Lovallo M, Okubo T et al (1995) Characterization of zeolite L nanoclusters. Chem Mater 7:1734–1741. doi:10.1021/cm00057a025 CrossRefGoogle Scholar
  5. 5.
    Tsapatsis M, Lovallo M, Davis ME (1996) High-resolution electron microscopy study on the growth of zeolite L nanoclusters. Microporous Mater 5:381–388. doi:10.1016/0927-6513(95)00069-0 CrossRefGoogle Scholar
  6. 6.
    Beck LW, Davis ME (1998) Alkylammonium polycations as structure-directing agents in MFI zeolite synthesis. Microporous Mesoporous Mater 22:107–114. doi:10.1016/S1387-1811(98)00096-1 CrossRefGoogle Scholar
  7. 7.
    Tsapatsis M (2014) 2-Dimensional zeolites. AIChE J 60:2374–2381. doi:10.1002/aic CrossRefGoogle Scholar
  8. 8.
    Pérez-Ramírez J, Christensen CH, Egeblad K et al (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542. doi:10.1039/b809030k CrossRefGoogle Scholar
  9. 9.
    Davis ME (1991) Zeolites and molecular sieves: not just ordinary catalysts. Ind Eng Chem Res 30:1675–1683CrossRefGoogle Scholar
  10. 10.
    Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768CrossRefGoogle Scholar
  11. 11.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRefGoogle Scholar
  12. 12.
    Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42:4004–4035. doi:10.1039/c2cs35330j CrossRefGoogle Scholar
  13. 13.
    Zečević J, de Jong KP (2013) Architecture at the nanoscale-self-pillared zeolite nanosheets. ChemCatChem 5:417–418. doi:10.1002/cctc.201200596 CrossRefGoogle Scholar
  14. 14.
    Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707. doi:10.1039/c3cs35488a CrossRefGoogle Scholar
  15. 15.
    Bai P, Olson DH, Tsapatsis M, Siepmann JI (2014) Understanding the unusual adsorption behavior in hierarchical zeolite nanosheets. ChemPhysChem 15:2225–2229. doi:10.1002/cphc.201402189 CrossRefGoogle Scholar
  16. 16.
    Chang C, Teixeira A, Li C et al (2013) Enhanced molecular transport in hierarchical silicalite-1. Langmuir 29:13943–13950CrossRefGoogle Scholar
  17. 17.
    Wang J, Yue W, Zhou W, Coppens M-O (2009) TUD-C: a tunable, hierarchically structured mesoporous zeolite composite. Microporous Mesoporous Mater 120:19–28. doi:10.1016/j.micromeso.2008.08.060 CrossRefGoogle Scholar
  18. 18.
    Choi M, Na K, Kim J et al (2009) SI: stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249. doi:10.1038/nature08288 CrossRefGoogle Scholar
  19. 19.
    Fan W, Snyder MA, Kumar S et al (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991. doi:10.1038/nmat2302 CrossRefGoogle Scholar
  20. 20.
    Lee P-S, Zhang X, Stoeger JA et al (2011) Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. J Am Chem Soc 133:493–502CrossRefGoogle Scholar
  21. 21.
    Chen H, Wydra J, Zhang X et al (2011) Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. J Am Chem Soc 133:12390–12393. doi:10.1021/ja2046815 CrossRefGoogle Scholar
  22. 22.
    Na K, Choi M, Park W et al (2010) Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc 132:4169–4177. doi:10.1021/ja908382n CrossRefGoogle Scholar
  23. 23.
    Groen JC, Zhu W, Brouwer S et al (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360. doi:10.1021/ja065737o CrossRefGoogle Scholar
  24. 24.
    Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121. doi:10.1039/b517510k CrossRefGoogle Scholar
  25. 25.
    Müller M, Harvey G, Prins R (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4. Microporous Mesoporous Mater 34:135–147CrossRefGoogle Scholar
  26. 26.
    Van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319. doi:10.1081/CR-120023908 CrossRefGoogle Scholar
  27. 27.
    Zhang X, Liu D, Xu D et al (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336:1684–1687. doi:10.1126/science.1221111 CrossRefGoogle Scholar
  28. 28.
    Chaikittisilp W, Suzuki Y, Mukti RR et al (2013) Formation of hierarchically organized zeolites by sequential intergrowth. Angew Chem 125:3439–3443. doi:10.1002/ange.201209638 CrossRefGoogle Scholar
  29. 29.
    Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed Engl 51:1962–1965. doi:10.1002/anie.201105738 CrossRefGoogle Scholar
  30. 30.
    Khaleel M, Wagner AJ, Mkhoyan KA, Tsapatsis M (2014) On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angew Chem Int Ed. doi:10.1002/anie.201402024 Google Scholar
  31. 31.
    Jeong H-K, Krohn J, Sujaoti K, Tsapatsis M (2002) Oriented molecular sieve membranes by heteroepitaxial growth. J Am Chem Soc 124:12966–12968CrossRefGoogle Scholar
  32. 32.
    Okubo T, Wakihara T, Plévert J et al (2001) Heteroepitaxial growth of a zeolite. Angew Chem Int Ed 40:1069–1071CrossRefGoogle Scholar
  33. 33.
    Millward G, Ramdas S, Thomas J (1985) On the direct imaging of offretite, cancrinite, chabazite and other related ABC-6 zeolites and their intergrowths. Proc R Soc Lond A Math Phys Eng. Sci 399:57–71CrossRefGoogle Scholar
  34. 34.
    Xu D, Swindlehurst GR, Wu H et al (2014) On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational intergrowths. Adv Funct Mater 24:201–208. doi:10.1002/adfm.201301975 CrossRefGoogle Scholar
  35. 35.
    Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–1216. doi:10.1107/S0021889800008372 CrossRefGoogle Scholar
  36. 36.
    Behr MJ, Mkhoyan KA, Aydil ES (2010) Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. ACS Nano 4:5087–5094. doi:10.1021/nn100944n CrossRefGoogle Scholar
  37. 37.
    Ravikovitch PI, Neimark AV (2001) Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf A Physicochem Eng Asp 187–188:11–21CrossRefGoogle Scholar
  38. 38.
    Rimer JD, Vlachos DG, Lobo RF (2005) Evolution of self-assembled silica- tetrapropylammonium nanoparticles at elevated temperatures. J Phys Chem B 109:12762–12771CrossRefGoogle Scholar
  39. 39.
    Davis TM, Drews TO, Ramanan H et al (2006) Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 5:400–408. doi:10.1038/nmat1636 CrossRefGoogle Scholar
  40. 40.
    Kumar S, Wang Z, Penn RL, Tsapatsis M (2008) A structural resolution cryo-TEM study of the early stages of MFI growth. J Am Chem Soc 130:17284–17286. doi:10.1021/ja8063167 CrossRefGoogle Scholar
  41. 41.
    Aerts A, Haouas M, Caremans T et al (2010) Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and 29Si NMR spectroscopy. Chemistry 16:2764–2774. doi:10.1002/chem.200901688 CrossRefGoogle Scholar
  42. 42.
    Rimer JD, Fedeyko JM, Vlachos DG, Lobo RF (2006) Silica self-assembly and synthesis of microporous and mesoporous silicates. Chemistry 12:2926–2934. doi:10.1002/chem.200500684 CrossRefGoogle Scholar
  43. 43.
    Porod G (1982) General Theory. In: Glatter O, Kratky O (eds) Small-angle X-ray scatt, 1st edn. Academic Press, London, pp 17–51Google Scholar
  44. 44.
    Weyerich B, Brunner-Popela J, Glatter O (1999) Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr 32:197–209. doi:10.1107/S0021889898011790 CrossRefGoogle Scholar
  45. 45.
    Mintova S, Olson NH, Senker J, Bein T (2002) Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. Angew Chem Int Ed Engl 41:2558–61Google Scholar
  46. 46.
    Petry DP, Haouas M, Wong SCC et al (2009) Connectivity analysis of the clear sol precursor of silicalite: are nanoparticles aggregated oligomers or silica particles? J Phys Chem C 113:20827–20836. doi:10.1021/jp906276g CrossRefGoogle Scholar
  47. 47.
    Kumar S, Davis TM, Ramanan H et al (2007) Aggregative growth of silicalite-1. J Phys Chem B 111:3398–3403. doi:10.1021/jp0677445 CrossRefGoogle Scholar
  48. 48.
    Tokay B, Erdem-Şenatalar A (2012) Variation of particle size and its distribution during the synthesis of silicalite-1 nanocrystals. Microporous Mesoporous Mater 148:43–52. doi:10.1016/j.micromeso.2011.07.011 CrossRefGoogle Scholar
  49. 49.
    Cundy C, Lowe B, Sinclair D (1993) Crystallisation of zeolitic molecular sieves: direct measurements of the growth behaviour of single crystals as a function of synthesis conditions. Faraday Discuss 95:235–252CrossRefGoogle Scholar
  50. 50.
    Persson A, Schoeman B, Sterte J, Otterstedt J (1994) The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14:557–567CrossRefGoogle Scholar
  51. 51.
    Cheng C-H, Shantz DF (2005) Silicalite-1 growth from clear solution: effect of alcohol identity and content on growth kinetics. J Phys Chem B 109:19116–19125. doi:10.1021/jp0524633 CrossRefGoogle Scholar
  52. 52.
    Huang Y, Yao J, Zhang X et al (2011) Role of ethanol in sodalite crystallization in an ethanol–Na2O–Al2O3–SiO2–H2O system. CrystEngComm 13:4714. doi:10.1039/c1ce05194f CrossRefGoogle Scholar
  53. 53.
    Wang H, Wang Z, Huang L et al (2001) Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17:2572–2574CrossRefGoogle Scholar
  54. 54.
    Terasaki O, Ohsuna T, Sakuma H et al (1996) Direct observation of “pure MEL type” zeolite. Chem Mater 8:463–468CrossRefGoogle Scholar
  55. 55.
    Jablonski G, Sand L, Gard J (1986) Synthesis and identification of ZSM-5/ZSM-11 pentasil intergrowth structures. Zeolites 6:396–402CrossRefGoogle Scholar
  56. 56.
    Piccione PM, Davis ME (2001) A new structure-directing agent for the synthesis of pure-phase ZSM-11. Microporous Mesoporous Mater 49:163–169. doi:10.1016/S1387-1811(01)00414-0 CrossRefGoogle Scholar
  57. 57.
    Millward G, Ramdas S, Thomas J (1983) Evidence for semi-regularly ordered sequences of mirror and inversion symmetry planes in ZSM-5/ZSM-11 shape-selective zeolitic catalysts. J Chem Soc Faraday Trans 2(79):1075–1082CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Garrett R. Swindlehurst
    • 1
  • Prashant Kumar
    • 1
  • Dandan Xu
    • 1
  • Saeed M. Alhassan
    • 2
  • K. Andre Mkhoyan
    • 1
  • Michael Tsapatsis
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Chemical EngineeringPetroleum InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations