Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Higher Chemical Stability of α-Li3N than β-Li3N in Atmosphere

Abstract

Lithium nitride (Li3N), which generally consists of α-Li3N and β-Li3N, is a promising material for catalysis and energy applications. It is generally recognized that Li3N can be easily oxidized by air at room temperature. However, herein, it was found that O2 can not oxidize Li3N even at 170 °C. In contrast, H2O in atmosphere can cause the degradation of Li3N due to its reaction with H2O to LiOH, followed by further reaction with CO2 to Li2CO3 at room temperature. Furthermore, it was revealed that H2O reacted with β-Li3N much faster than α-Li3N, indicating that α-Li3N is more stable than β-Li3N in atmosphere.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    vonderGonna J, Meurer HJ, Nover G, Peun T, Schonbohm D, Will G (1998) In-situ investigations of the reversible hBN-cBN-hBN-transformation in the Li3N-BN catalyst system using synchrotron radiation. Mater Lett 33(5-6):321–326

  2. 2.

    Hu YH, Huo Y (2011) Fast and exothermic reaction of CO2 and Li3N into C-N-containing solid Materials. J Phys Chem A 115(42):11678–11681

  3. 3.

    Gregory DH (2008) Lithium nitrides as sustainable energy materials. Chem Rec 8(4):229–239

  4. 4.

    Gregory DH (2008) Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J Mater Chem 18(20):2321–2330

  5. 5.

    Markmaitree T, Ren R, Shaw LL (2006) Enhancement of lithium amide to lithium imide transition via mechanical activation. J Phys Chem B 110(41):20710–20718

  6. 6.

    Nakamori Y, Orimo S (2004) Li–N based hydrogen storage materials. Mater Sci Eng B 108(1–2):48–50

  7. 7.

    Nakamori Y, Yamagishi T, Yokoyama M, S-i Orimo (2004) Synthesis of LiNH2 films by vacuum evaporation. J Alloys Compd 377(1–2):L1–L3

  8. 8.

    Ichikawa T, Isobe S, Hanada N, Fujii H (2004) Lithium nitride for reversible hydrogen storage. J Alloys Compd 365(1–2):271–276

  9. 9.

    Ichikawa T, Hanada N, Isobe S, Leng HY, Fujii H (2005) Hydrogen storage properties in Ti catalyzed Li–N–H system. J Alloys Compd 404–406:435–438

  10. 10.

    Ichikawa T, Hanada N, Isobe S, Leng H, Fujii H (2004) Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J Phys Chem B 108(23):7887–7892

  11. 11.

    Hu YH, Ruckenstein E (2003) Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. J Phys Chem A 107(46):9737–9739

  12. 12.

    Hu YH, Ruckenstein E (2004) Highly effective Li2O/Li3N with ultrafast kinetics for H2 storage. Ind Eng Chem Res 43(10):2464–2467

  13. 13.

    Hu YH, Yu NY, Ruckenstein E (2005) Hydrogen storage in Li3N: deactivation caused by a high dehydrogenation temperature. Ind Eng Chem Res 44(12):4304–4309

  14. 14.

    Hu YH, Yu NY, Ruckenstein E (2004) Effect of the heat pretreatment of Li3N on its H2 storage performance. Ind Eng Chem Res 43(15):4174–4177

  15. 15.

    Hu YH, Ruckenstein E (2005) High reversible hydrogen capacity of LiNH2/Li3N mixtures. Ind Eng Chem Res 44(5):1510–1513

  16. 16.

    Hu YH, Ruckenstein E (2006) Ultrafast reaction between Li3N and LiNH2 to prepare the effective hydrogen storage material Li2NH. Ind Eng Chem Res 45(14):4993–4998

  17. 17.

    Hu YH, Ruckenstein E (2006) Hydrogen storage of Li2NH prepared by reacting Li with NH3. Ind Eng Chem Res 45(1):182–186

  18. 18.

    Yao JH, Shang C, Aguey-Zinsou KF, Guo ZX (2007) Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2 + LiH). J Alloys Compd 432(1–2):277–282

  19. 19.

    Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420(6913):302–304

  20. 20.

    Kojima Y, Kawai Y (2004) Hydrogen storage of metal nitride by a mechanochemical reaction. Chem Commun 0(19):2210–2211

  21. 21.

    Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Scott Chumbley L, Pecharsky V (2007) Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems. Acta Mater 55(9):3121–3130

  22. 22.

    Lapp T, Skaarup S, Hooper A (1983) Ionic conductivity of pure and doped Li3N. Solid State Ion 11(2):97–103

  23. 23.

    Brendecke H, Wagner E (1977) Electronic properties of superionic conductor Li3N. J Electrochem Soc 124(8):C305–C305

  24. 24.

    Wahl J, Holland U (1978) Local ionic motion in the superionic conductor Li3N. Solid State Commun 27(3):237–241

  25. 25.

    Boukamp BA, Huggins RA (1976) Lithium ion conductivity in lithium nitride. Phys Lett A 58(4):231–233

  26. 26.

    Alpen UV, Rabenau A, Talat GH (1977) Ionic conductivity in Li3N single crystals. Appl Phys Lett 30(12):621–623

  27. 27.

    Brese NE, Okeeffe M (1992) Crystal chemistry of inorganic nitrides. Struct Bond 79:307–378

  28. 28.

    Zintl E, Brauer G (1935) Constitution of lithium nitride. Z Elektrochem 41:102–107

  29. 29.

    Rabenau A, Schulz H (1976) Re-evaluation of the lithium nitride structure. J Less Common Met 50(1):155–159

  30. 30.

    Schulz H, Thiemann KH (1979) Defect structure of the ionic conductor lithium nitride (Li3N). Acta Crystallogr Sect A 35:309–314

  31. 31.

    Mali M, Roos J, Brinkmann D (1987) Nuclear-magnetic-resonance evidence for a new phase induced by pressure in the superionic conductor Li3N. Phys Rev B 36(7):3888–3890

  32. 32.

    Schon JC, Wevers MAC, Jansen M (2001) Prediction of high pressure phases in the systems Li3N, Na3N, (Li, Na)3N, Li2S and Na2S. J Mater Chem 11(1):69–77

  33. 33.

    Beister HJ, Haag S, Kniep R, Strössner K, Syassen K (1988) Phase transformations of lithium nitride under pressure. Angew Chem Int Ed 27(8):1101–1103

  34. 34.

    Huo Y, Hu YH (2012) UV–visible absorption spectrum determination of optical energy gaps of α and β lithium nitrides. J Phys Chem Solids 73(8):999–1002

  35. 35.

    Ho AC, Granger MK, Ruoff AL, Van Camp PE, Van Doren VE (1999) Experimental and theoretical study of Li3N at high pressure. Phys Rev B 59(9):6083–6086

  36. 36.

    Lazicki A, Maddox B, Evans WJ, Yoo CS, McMahan AK, Pickett WE, Scalettar RT, Hu MY, Chow P (2005) New cubic phase of Li3N: stability of the N3− ion to 200 GPa. Phys Rev Lett 95(16):165503

  37. 37.

    Brendecke H, Bludau W (1979) Optical absorption of lithium nitride. J Appl Phys 50(7):4743–4746

  38. 38.

    Brendecke H, Bludau W (1980) Photoluminescence properties of lithium nitride. Phys Rev B 21(2):805–815

  39. 39.

    Kerker G (1981) Electronic structure of Li3N. Phys Rev B 23(12):6312–6318

  40. 40.

    Dovesi R, Pisani C, Ricca F, Roetti C, Saunders VR (1984) Hartree–Fock study of crystalline lithium nitride. Phys Rev B 30(2):972–979

  41. 41.

    Lazicki A, Yoo CW, Evans WJ, Hu MY, Chow P, Pickett WE (2008) Pressure-induced loss of electronic interlayer state and metallization in the ionic solid Li3N: experiment and theory. Phys Rev B 78(15):155133

  42. 42.

    Fister TT, Seidler GT, Shirley EL, Vila FD, Rehr JJ, Nagle KP, Linehan JC, Cross JO (2008) The local electronic structure of α-Li3N. J Chem Phys 129(4):044702

  43. 43.

    Wu SN, Dong ZL, Boey F, Wu P (2009) Electronic structure and vacancy formation of Li3N. Appl Phys Lett 94(17):172104

  44. 44.

    Cui S, Feng W, Hu H, Feng Z, Wang Y (2009) Structural transition of Li3N under high pressure: A first-principles study. Solid State Commun 149(15–16):612–615

  45. 45.

    Li W, Chen JF, Wang T (2010) Electronic and elastic properties of Li3N under different pressure. Phys B 405(1):400–403

  46. 46.

    Cullity BD (1956) Elements of X-Ray diffraction, 3rd edn. Addison–Wesley publishing company Inc, Massachusetts

  47. 47.

    Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1977) Phonon spectra and lattice dynamics of lithium nitride. Solid State Commun 22(11):681–684

  48. 48.

    Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1978) Infrared and raman-spectra and lattice-dynamics of superionic conductor Li3N. Phys Rev B 17(2):884–893

  49. 49.

    Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J Chem Phys 54(11):4788–4796

  50. 50.

    Pasierb P, Komornicki S, Rokita M, Rȩkas M (2001) Structural properties of Li2CO3–BaCO3 system derived from IR and Raman spectroscopy. J Mol Struct 596(1–3):151–156

  51. 51.

    Jones LH (1954) The infrared spectra and structure of LiOH, LiOHH2O and the deuterium species. Remark on fundamental frequency of OH. J Chem Phys 22(2):217–219

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation (NSF-CBET-0931587). Hu also thanks Charles and Carroll McArthur for their great support.

Author information

Correspondence to Yun Hang Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, Y.H. Higher Chemical Stability of α-Li3N than β-Li3N in Atmosphere. Top Catal 58, 386–390 (2015). https://doi.org/10.1007/s11244-015-0379-8

Download citation

Keywords

  • α-Li3N
  • β-Li3N
  • Stability
  • H2O
  • CO2
  • XRD
  • UV–Vis absorption
  • FT-IR