Topics in Catalysis

, Volume 58, Issue 4–6, pp 334–342 | Cite as

Effect of Ionic Radius of Rare Earth on USY Zeolite in Fluid Catalytic Cracking: Fundamentals and Commercial Application

  • Yuying ShuEmail author
  • Arnaud Travert
  • Rosann Schiller
  • Michael Ziebarth
  • Richard Wormsbecher
  • Wu-Cheng ChengEmail author
Original Paper


The ultrastable Y zeolite (USY) in fluid cracking catalyst is commonly stabilized by ion-exchange with rare earth (RE) cations. The RE-exchange provides hydrothermal stability to the zeolite by improving surface area retention, as well as inhibiting dealumination, resulting in greater preservation of acid sites. Though La and Ce are commonly used in fluid catalytic cracking (FCC) catalysts, we have observed that the stability of REUSY catalysts improves as the ionic radius of the RE cation decreases. In this paper, we compare the activity and selectivity of REUSY catalysts, stabilized with La and heavy (Ho, Er, and Yb) rare earth cations, the latter having a smaller ionic radius, due to the well-known phenomenon of lanthanide contraction. The experimental data show that a significant improvement in catalytic activity is achieved when RE elements having a smaller ionic radius are used to make the REUSY catalyst. Yttrium is even more effective than the heavier lanthanides in stabilizing Y-zeolite, leading to higher cracking activity and gasoline selectivity under a variety of deactivation conditions. These benefits of yttrium exchange does not only result from a larger resistance to dealumination, but also to an increase of the catalyst intrinsic cracking activity, which may be explained by changes in the adsorption of hydrocarbons at the active sites. Examples of commercial applications of yttrium-based FCC catalysts are given.


Fluid catalytic cracking USY zeolite Rare earths exchanged zeolite Lanthanide contraction Yttrium 


  1. 1.
    Swaty TE (2005) Hydrocarb Process 84(9):35Google Scholar
  2. 2.
    Silvy RP (2004) Appl Catal A 261:247CrossRefGoogle Scholar
  3. 3.
    Nakamura O (2006) Oil Gas J 104:56Google Scholar
  4. 4.
    Cheng WC, Habib ET, Rajagopalan K, Roberie TG, Wormsbecher RF, Ziebarth MS (2008) Fluid catalytic cracking in handbook of heterogeneous catalysis, 2nd edn. Wiley, pp 2741–2778Google Scholar
  5. 5.
    Plank C, Rosinski E (1964) US Patent 3,140,253, Assigned to Socony Mobil OilGoogle Scholar
  6. 6.
    Maher PK, McDaniel CV (1966) US Patent 3,293,192, Assigned to W. R. GraceGoogle Scholar
  7. 7.
    Breck DW (1974) Zeolite molecular sieves. Wiley, New York, p 92Google Scholar
  8. 8.
    Fichtner-Schmittler H, Lohse U, Engelhardt G, Patzelova V (1984) Cryst Res Tech 19:K1CrossRefGoogle Scholar
  9. 9.
    Sohn JR, DeCanio SJ, Lunsford JH, O’Donnell DJ (1986) Zeolites 6:225CrossRefGoogle Scholar
  10. 10.
    Nery JG, Mascarenhas YP, Bonagamba TJ, Mello NC, Sousa-Aguiar EF (1997) Zeolites 18:44CrossRefGoogle Scholar
  11. 11.
    Klein H, Fuess H, Hunger M (1995) J Chem Soc Faraday Trans 91:1831CrossRefGoogle Scholar
  12. 12.
    Schṻßler F, Pidko EA, Kolvenbach R, Sievers C, Hensen EJM, van Santen RA, Lercher J (2011) J Phys Chem C 115:21763–21776CrossRefGoogle Scholar
  13. 13.
    Hriljac JA, Eddy MM, Cheetham AK, Donohue JA, Ray CJ (1993) J Solid State Chem 106:66CrossRefGoogle Scholar
  14. 14.
    Sousa-Aguiar EF, Trigueiro FE, Totin FMZ (2013) Catal Today 218–219:115–122CrossRefGoogle Scholar
  15. 15.
    Nery JG, Giotto MV, Mascarenhas YP, Cardoso D, Zotin FMZ, Sousa-Aguiar EF (2000) Micro Meso Mater 41:281–293CrossRefGoogle Scholar
  16. 16.
    Jolly W (1984) Modern inorganic chemistry. McGraw-Hill, New York p 22Google Scholar
  17. 17.
    Johnson MFL (1978) J Catal 52:425–431CrossRefGoogle Scholar
  18. 18.
    ASTM D-5757 (2003) Standard test method for determination of the unit cell dimension of a faujasite-type zeoilte, ASTM, PhiladelphiaGoogle Scholar
  19. 19.
    Kofke TJG, Gorte RJ, Farneth WE (1988) J Catal 114:34CrossRefGoogle Scholar
  20. 20.
    Boock LT, Petti TF, Rudesill JA (1996) ACS Symp Ser 634:171–183CrossRefGoogle Scholar
  21. 21.
    Kayser JC (2000) US Patent 6,069,012Google Scholar
  22. 22.
    Wallenstein D, Haas A, Harding RH (2000) Appl Catal 203:23–36CrossRefGoogle Scholar
  23. 23.
    Wallenstein D, Alkemade U (1996) Appl Catal A Gen 137:37CrossRefGoogle Scholar
  24. 24.
    Eder F, Lercher JA (1997) Zeolites 18:75–81CrossRefGoogle Scholar
  25. 25.
    Eder F, Stockenhuber M, Lercher JA (1997) J Phys Chem B 101:5414–5419CrossRefGoogle Scholar
  26. 26.
    Kim JG, Kompany T, Ryoo R, Ito T, Fraissard J (1994) Zeolites 14:427–432CrossRefGoogle Scholar
  27. 27.
    De Moor BA, Reyniers MF, Gobin OC, Lercher JA, Marin GB (2011) J Phys Chem C 115:1204–1209CrossRefGoogle Scholar
  28. 28.
    Bhan A, Gounder R, Macht J, Iglesis E (2008) J Catal 252:221–224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuying Shu
    • 1
    Email author
  • Arnaud Travert
    • 2
  • Rosann Schiller
    • 1
  • Michael Ziebarth
    • 1
  • Richard Wormsbecher
    • 1
  • Wu-Cheng Cheng
    • 1
    Email author
  1. 1.Catalysts TechnologiesW. R. GraceColumbiaUSA
  2. 2.Laboratoire Catalyse et SpectrochimieENSICAEN, Université de Caen, CNRSCaenFrance

Personalised recommendations