Topics in Catalysis

, Volume 58, Issue 4–6, pp 314–324 | Cite as

Facile Styrene Epoxidation with H2O2 over Novel Niobium Containing Cage Type Mesoporous Silicate, Nb-KIT-5

  • Anand Ramanathan
  • Rajamanickam Maheswari
  • Bala Subramaniam
Original Paper

Abstract

Niobium has been incorporated into cage-like ordered mesoporous KIT-5, a cubic close-packed (Fm3m) structured silica, for the first time by a direct hydrothermal synthesis method. Small-angle X-ray scattering spectra and nitrogen physisorption results confirm the formation of the KIT-5 structure. The incorporation of Nb and its coordination were confirmed by techniques such as elemental analysis, diffuse reflectance UV–Vis, Raman, HR-SEM and NH3-TPD. When tested as epoxidation catalyst for styrene with H2O2, Nb-KIT-5 mainly yielded (1,2-dimethoxyethyl) benzene with methanol as solvent. It also showed better catalytic activity compared to other mesostructured catalysts such as Nb-KIT-6 and Nb-SBA-15.

Keywords

KIT-5 Niobium Lewis acid Epoxidation Styrene 

Notes

Acknowledgments

This research was partly supported with funds from the following sources: National Science Foundation Accelerating Innovation Research Grant (IIP-1127765) and United States Department of Agriculture USDA/NIFA Award 2011-10006-30362. The authors thank Dr. Prem Thapa of the Microscopy and Analytical Imaging Laboratory, University of Kansas for dual beam SEM and TEM characterizations and Dr. Brian P. Grady, University of Oklahoma, for SAXS analysis. The FEI Versa 3D dual-beam FIB/SEM instrument and WAXS analysis instrument (XRD) at the University of Kansas was acquired through an NSF Major Research Instrumentation grants CBET 1229645 and CHE-0923449 respectively.

Supplementary material

11244_2015_372_MOESM1_ESM.docx (429 kb)
Supplementary material 1 (DOCX 430 kb)

References

  1. 1.
    Kholdeeva OA (2014) Recent developments in liquid-phase selective oxidation using environmentally benign oxidants and mesoporous metal silicates. Catal Sci Technol 4:1869–1889CrossRefGoogle Scholar
  2. 2.
    Feliczak-Guzik A, Nowak I (2009) Mesoporous niobosilicates serving as catalysts for synthesis of fragrances. In: Selective papers of the 6th international symposium group five elements, Poznan, Poland, 7–10 May 2008, vol 142, pp 288–292Google Scholar
  3. 3.
    Somma F, Strukul G (2006) Niobium containing micro-, meso- and macroporous silica materials as catalysts for the epoxidation of olefins with hydrogen peroxide. Catal Lett 107:73–81CrossRefGoogle Scholar
  4. 4.
    Aronne A, Turco M, Bagnasco G et al (2008) Gel derived niobium–silicon mixed oxides: characterization and catalytic activity for cyclooctene epoxidation. Appl Catal Gen 347:179–185CrossRefGoogle Scholar
  5. 5.
    Tiozzo C, Bisio C, Carniato F et al (2013) Niobium-silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Phys Chem Chem Phys 15:13354–13362CrossRefGoogle Scholar
  6. 6.
    Tiozzo C, Bisio C, Carniato F et al (2013) Epoxidation with hydrogen peroxide of unsaturated fatty acid methyl esters over Nb(V)-silica catalysts. Eur J Lipid Sci Technol 115:86–93CrossRefGoogle Scholar
  7. 7.
    Gallo A, Tiozzo C, Psaro R et al (2013) Niobium metallocenes deposited onto mesoporous silica via dry impregnation as catalysts for selective epoxidation of alkenes. J Catal 298:77–83CrossRefGoogle Scholar
  8. 8.
    Tiozzo C, Bisio C, Carniato F, Guidotti M (2014) Grafted non-ordered niobium-silica materials: versatile catalysts for the selective epoxidation of various unsaturated fine chemicals. Catal Today 235:49–57CrossRefGoogle Scholar
  9. 9.
    Nowak I, Kilos B, Ziolek M, Lewandowska A (2003) Epoxidation of cyclohexene on Nb-containing meso- and macroporous materials. Catal Today 78:487–498CrossRefGoogle Scholar
  10. 10.
    Di Serio M, Turco R, Pernice P et al (2012) Valuation of Nb2O5–SiO2 catalysts in soybean oil epoxidation. Catal Today 192:112–116CrossRefGoogle Scholar
  11. 11.
    Ramanathan A, Maheswari R, Barich DH, Subramaniam B (2014) Niobium incorporated mesoporous silicate, Nb-KIT-6: synthesis and characterization. Micropor Mesopor Mater 190:240–247CrossRefGoogle Scholar
  12. 12.
    Yan W, Ramanathan A, Ghanta M, Subramaniam B (2014) Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6). Catal Sci Technol 4:4433–4439CrossRefGoogle Scholar
  13. 13.
    Kleitz F, Liu D, Anilkumar GM et al (2003) Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure. J Phys Chem B 107:14296–14300CrossRefGoogle Scholar
  14. 14.
    Maheswari R, Pachamuthu MP, Ramanathan A, Subramaniam B (2014) Synthesis, characterization, and epoxidation activity of tungsten-incorporated SBA-16 (W-SBA-16). Ind Eng Chem Res. doi:10.1021/ie501784c Google Scholar
  15. 15.
    Anand C, Srinivasu P, Mane GP et al (2013) Direct synthesis and characterization of highly ordered cobalt substituted KIT-5 with 3D nanocages for cyclohexene epoxidation. Micropor Mesopor Mater 167:146–154CrossRefGoogle Scholar
  16. 16.
    Anand C, Srinivasu P, Mane GP et al (2012) Preparation of mesoporous titanosilicate molecular sieves with a cage type 3D porous structure for cyclohexene epoxidation. Micropor Mesopor Mater 160:159–166CrossRefGoogle Scholar
  17. 17.
    Srinivasu P, Alam S, Balasubramanian VV et al (2008) Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content. Adv Funct Mater 18:640–651CrossRefGoogle Scholar
  18. 18.
    Ramanathan A, Maheswari R, Grady BP et al (2013) Tungsten-incorporated cage-type mesoporous silicate: W-KIT-5. Micropor Mesopor Mater 175:43–49CrossRefGoogle Scholar
  19. 19.
    Hsu YT, Chen WL, Yang CM (2009) Co-condensation synthesis of aminopropyl-functionalized KIT-5 mesophases using carboxy-terminated triblock copolymer. J Phys Chem C 113:2777–2783CrossRefGoogle Scholar
  20. 20.
    Wu CY, Hsu YT, Yang CM (2009) Structural modulation of cage-like mesoporous KIT-5 silica by post-synthesis treatments with ammonia and/or sulfuric acid. Micropor Mesopor Mater 117:249–256CrossRefGoogle Scholar
  21. 21.
    Balasubramanian VV, Srinivasu P, Anand C et al (2008) Highly active three-dimensional cage type mesoporous aluminosilicates and their catalytic performances in the acetylation of aromatics. Micropor Mesopor Mater 114:303–311CrossRefGoogle Scholar
  22. 22.
    Trejda M, Tuel A, Kujawa J et al (2008) Niobium rich SBA-15 materials—preparation, characterisation and catalytic activity. Micropor Mesopor Mater 110:271–278CrossRefGoogle Scholar
  23. 23.
    Carniti P, Gervasini A, Marzo M (2008) Dispersed NbOx catalytic phases in silica matrixes: influence of niobium concentration and preparative route. J Phys Chem C 112:14064–14074CrossRefGoogle Scholar
  24. 24.
    Hartmann M (1999) Synthesis of niobium- and tantalum-containing silicalite-1. Chem Lett 5:407–408CrossRefGoogle Scholar
  25. 25.
    Ko YS, Jang HT, Ahn WS (2007) Hydrothermal synthesis and characterization of niobium-containing silicalite-1 molecular sieves with MFI structure. J Ind Eng Chem 13:764–771Google Scholar
  26. 26.
    Hartmann M, Prakash AM, Kevan L (2003) Characterization and catalytic evaluation of mesoporous and microporous molecular sieves containing niobium. Catal Today 78:467–475CrossRefGoogle Scholar
  27. 27.
    Srinivasu P, Anand C, Alam S et al (2008) Direct synthesis and the morphological control of highly ordered two-dimensional P6mm mesoporous niobium silicates with high niobium content. J Phys Chem C 112:10130–10140CrossRefGoogle Scholar
  28. 28.
    Tanaka T, Nojima H, Yoshida H et al (1993) Preparation of highly dispersed niobium oxide on silica by equilibrium adsorption method. Catal Today 16:297–307CrossRefGoogle Scholar
  29. 29.
    Carniato F, Bisio C, Psaro R et al (2014) Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents. Angew Chem Int Ed 53:10095–10098CrossRefGoogle Scholar
  30. 30.
    García-Sancho C, Sádaba I, Moreno-Tost R et al (2013) Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts. ChemSusChem 6:635–642CrossRefGoogle Scholar
  31. 31.
    Gallo JMR, Paulino IS, Schuchardt U (2004) Cyclooctene epoxidation using Nb-MCM-41 and Ti-MCM-41 synthesized at room temperature. Appl Catal A 266:223–227CrossRefGoogle Scholar
  32. 32.
    Ramanathan A, Maheswari R, Thapa PS, Subramaniam B (2013) Novel materials for catalysis and fuels processing. In: Bravo-Suárez JJ, Kidder MK, Schwartz V (eds) Rapid room temperature synthesis of Ce-MCM-48: an active catalyst for trans-stilbene epoxidation with tert-butyl hydroperoxide. ACS Symposium Series 1132, American Chemical Society. Washington, DC, pp 213–228. doi:10.1021/bk-2013-1132.ch008 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anand Ramanathan
    • 1
  • Rajamanickam Maheswari
    • 1
    • 3
  • Bala Subramaniam
    • 1
    • 2
  1. 1.Center for Environmentally Beneficial CatalysisThe University of KansasLawrenceUSA
  2. 2.Department of Chemical and Petroleum EngineeringThe University of KansasLawrenceUSA
  3. 3.Department of ChemistryAnna UniversityChennaiIndia

Personalised recommendations