Topics in Catalysis

, Volume 58, Issue 4–6, pp 258–270 | Cite as

Use of Solvatochromism to Assay Preferential Solvation of a Prototypic Catalytic Site

  • Birgit Schwenzer
  • Lelia Cosimbescu
  • Vassiliki-Alexandra Glezakou
  • Abhijeet J. Karkamkar
  • Zheming Wang
  • Robert S. WeberEmail author
Original Paper


The composition of the reaction medium near photoactive catalytic sites can be inferred from the solvatochromism of the absorption and emission spectra of the wetted sites, which depend on the polarizability of the fluid. In brief, solvatochromism measures the interaction of the dipole moments of the ground and excited states with the electric field imposed by the solvent shell: a field, which does not relax on the time scale of the absorption or emission events. To establish the utility of the technique for inorganic catalysts that operate in complex reaction media, such as encountered in the upgrading of biogenic fuels, we have measured the solvatochromism of a common, structural feature of metal oxide catalysts, mono-oxide or dioxide of a transition metal prepared by incorporating the OM or O2M moiety into the framework of a polyhedral oligomeric silsesquioxane (POSS). In toluene, cyclohexene, chloroform and tetrahydrofuran, POSS-ligated oxometalates exhibit strong ligand-to-metal charge-transfer bands in their UV–visible absorption and emission spectra. From the solvatochromism of the chromophores dissolved in toluene-chloroform mixtures we inferred an unexpectedly strong, preferential solvation of the chromophore even when all three components (oxometalate and the two solvents) were highly miscible.

Graphical Abstract


Luminescence spectroscopy vanadium Chromium Molybdenum Tungsten oxides TD-DFT Ligand-to-metal charge transfer spectroscopy Mesoscale measurements 



This research was supported in part by the Laboratory Directed Research & Development program at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830. A portion of the research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    Boudart M, Cheng WC (1987) Catalytic hydrogenation of cyclohexene: 7. Liquid phase reaction on supported nickel. J Catal 106(1):134–143CrossRefGoogle Scholar
  2. 2.
    Clerici MG (2001) The role of the solvent in TS-1 chemistry: active or passive? An early study revisited. Top Catal 15(2–4):257–263CrossRefGoogle Scholar
  3. 3.
    Mukherjee S, Vannice M (2006) Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J Catal 243(1):108–130. doi: 10.1016/j.jcat.2006.06.021 CrossRefGoogle Scholar
  4. 4.
    Mukherjee S, Vannice M (2006) Solvent effects in liquid-phase reactions II. Kinetic modeling for citral hydrogenation. J Catal 243(1):131–148. doi: 10.1016/j.jcat.2006.06.018 CrossRefGoogle Scholar
  5. 5.
    Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—a review. Appl Catal A 213(1):1–24CrossRefGoogle Scholar
  6. 6.
    Madon RJ, Iglesia E (2000) Catalytic reaction rates in thermodynamically non-ideal systems. J Mol Catal A 163:189–204CrossRefGoogle Scholar
  7. 7.
    Wan H, Vitter A, Chaudhari RV, Subramaniam B (2014) Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. J Catal 309:174–184CrossRefGoogle Scholar
  8. 8.
    Wan H, Chaudhari RV, Subramaniam B (2012) Catalytic hydroprocessing of p-Cresol: metal, solvent and mass-transfer effects. Top Catal 55(3–4):129–139CrossRefGoogle Scholar
  9. 9.
    Struijk J, Scholten J (1992) Selectivity to cyclohexenes in the liquid phase hydrogenation of benzene and toluene over ruthenium catalysts, as influenced by reaction modifiers. Appl Catal A 82(2):277–287CrossRefGoogle Scholar
  10. 10.
    Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52(3):297–303CrossRefGoogle Scholar
  11. 11.
    Caratzoulas S, Davis ME, Gorte RJ, Gounder R, Lobo RF, Nikolakis V, Sandler SI, Snyder MA, Tsapatsis M, Vlachos DG (2014) Challenges of and insights into acid-catalyzed transformations of sugars. J Phys Chem C 118:22815–22833CrossRefGoogle Scholar
  12. 12.
    Reichardt C (1982) Solvent effects on chemical reactivity. Pure Appl Chem 54:1867–1884CrossRefGoogle Scholar
  13. 13.
    Reichardt C, Welton T (2010) Solvent effects in organic chemistry, 4th edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Buncel E, Stairs RA, Wilson H (2003) The role of the solvent in chemical reactions. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14(5):1245–1259. doi: 10.1039/c2gc16670d CrossRefGoogle Scholar
  16. 16.
    Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (2010) What is Solvatochromism? J Phys Chem B 114(51):17128–17135CrossRefGoogle Scholar
  17. 17.
    Fidale LC, Heinze T, El Seoud OA (2013) Perichromism: a powerful tool for probing the properties of cellulose and its derivatives. Carbohydr Polym 93:129–134CrossRefGoogle Scholar
  18. 18.
    Grate JW, Zhang C, Wietsma TW, Warner MG, Anheier NC, Bernacki BE, Orr G, Oostrom M (2010) A note on the visualization of wetting film structures and a nonwetting immiscible fluid in a pore network micromodel using a solvatochromic dye. Water Resour Res 46(11):W11602/11601–W11602/11606Google Scholar
  19. 19.
    Zhang X, Steel WH, Walker RA (2003) Probing solvent polarity across strongly associating solid/liquid interfaces using molecular rulers. J Phys Chem B 107:3829–3836CrossRefGoogle Scholar
  20. 20.
    Michaelis J, Braeuchle C (2010) Reporters in the nanoworld: diffusion of single molecules in mesoporous materials. Chem Soc Rev 39(12):4731–4740. doi: 10.1039/c0cs00107d CrossRefGoogle Scholar
  21. 21.
    Anpo M, Matsuoka M, Takeuchi M (2009) Photofunctional zeolites and mesoporous materials incorporating single-site heterogeneous catalysts. In: Klabunde KJ, Richards RM (eds) Nanoscale materials in chemistry, 2nd edn. Wiley, New York, pp 605–627CrossRefGoogle Scholar
  22. 22.
    Hazenkamp M, Blasse G (1992) Characterization of silica supported transition-metal oxide catalysts by luminescence spectroscopy. Ber Bunsen Ges 96(10):1471–1477CrossRefGoogle Scholar
  23. 23.
    Hazenkamp M, Blasse G (1992) A luminescence spectroscopy study on supported vanadium and chromium-oxide catalysts. J Phys Chem 96(8):3442–3446CrossRefGoogle Scholar
  24. 24.
    Lee EL, Wachs IE (2008) Molecular design and in situ spectroscopic investigation of multilayered supported M1Ox/M2Ox/SiO2 catalysts. J Phys Chem C 112:20418–20428CrossRefGoogle Scholar
  25. 25.
    Lewandowska AE, Banares MA, Tielens F, Che M, Dzwigaj S (2010) Different kinds of tetrahedral V species in vanadium-containing zeolites evidenced by diffuse reflectance UV–Vis, Raman, and periodic density functional theory. J Phys Chem C 114:19771–19776CrossRefGoogle Scholar
  26. 26.
    Mota A, Hallett JP, Kuznetsov ML, Correia I (2011) Structural characterization and DFT study of VIVO(acac)2 in imidazolium ionic liquids. Phys Chem Chem Phys 13(33):15094–15102. doi: 10.1039/c1cp20800d CrossRefGoogle Scholar
  27. 27.
    Weckhuysen B, Keller D (2003) Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today 78:25–46CrossRefGoogle Scholar
  28. 28.
    Adolph S, Spange S, Zimmerman Y (2000) Catalytic activities of various moderately strong solid acids and their correlation with surface polarity parameters. J Phys Chem B 104:6429–6438CrossRefGoogle Scholar
  29. 29.
    Kahle I, Spange S (2010) Internal and external acidity of faujasites as measured by a solvatochromic spiropyran. J Phys Chem C 114:15448–15453CrossRefGoogle Scholar
  30. 30.
    Prause S, Spange S (2004) Adsorption of polymers on inorganic solid acids investigated by means of coadsorbed solvatochromic probes. J Phys Chem B 108:5734–5741CrossRefGoogle Scholar
  31. 31.
    Seifert S, Seifert A, Brunklaus G, Hofmann K, Rüffer T, Lang H, Spange S (2012) Probing the surface polarity of inorganic oxides using merocyanine-type dyes derived from barbituric acid. New J Chem 36:674–684CrossRefGoogle Scholar
  32. 32.
    Spange S, Vilsmeier E, Zimmerman Y (2000) Probing the surface polarity of various silicas and other moderately strong solid acids by means of different genuine solvatochromic dyes. J Phys Chem B 104:6417–6428CrossRefGoogle Scholar
  33. 33.
    Spange S, Zimmerman Y, Graeser A (1999) Hydrogen-bond-donating acidity and dipolarity/polarizability of surfaces with silica gels and mesoporous MCM-41 materials. Chem Mater 11:3245–3251CrossRefGoogle Scholar
  34. 34.
    Zhang X, Cunningham MM, Walker RA (2003) Solvent polarity at polar solid surfaces: the role of solvent structure. J Phys Chem B 107:3183–3195CrossRefGoogle Scholar
  35. 35.
    Mudring A-V, Kirchner B (2009) Optical spectroscopy and ionic liquids. Top Curr Chem 290:285–310. doi: 10.1007/128_2008_45 CrossRefGoogle Scholar
  36. 36.
    Ravi M, Samanta A, Radhakrishnan TP (1994) Excited state dipole moments from an efficient analysis of solvatochromic stokes shift data. J Phys Chem 98:9133–9136CrossRefGoogle Scholar
  37. 37.
    Schoonheydt RA (2010) UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. Chem Soc Rev 39(12):5051–5066. doi: 10.1039/c0cs00080a CrossRefGoogle Scholar
  38. 38.
    Silva PL, Trassi MAS, Martins CT, El Seoud OA (2009) Solvatochromism in binary mixtures: first report on a solvation free energy relationship between solvent exchange equilibrium constants and the properties of the medium. J Phys Chem B 113:9512–9519CrossRefGoogle Scholar
  39. 39.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, vol 1, vol 6, 2nd edn., Solvent effects on emission spectra. Kluwer Academic Publishers, New York, p 187CrossRefGoogle Scholar
  40. 40.
    Quadrelli EA, Basset J-M (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254(5–6):707–728. doi: 10.1016/j.ccr.2009.09.031 CrossRefGoogle Scholar
  41. 41.
    Yoon CW, Hirsekorn KF, Neidig ML, Yang X, Tilley TD (2011) Mechanism of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA15 and TS-1 selective oxidation catalysts: insights from spectroscopic and density functional theory studies. ACS Catalysis 1:1665–1678CrossRefGoogle Scholar
  42. 42.
    Feher FJ, Blanski RL (1990) Polyhedral oligometallasilasesquioxanes as models for silica-supported catalysts: chromium attached to two vicinal siloxy groups. J Chem Soc, Chem Commun 22:1972–1995Google Scholar
  43. 43.
    Cabrero-Antonino JR, García T, Rubio-Marqués P, Vidal-Moya JA, Leyva-Pérez A, Al-Deyab SS, Al-Resayes SI, Díaz U, Corma A (2011) Synthesis of organic–inorganic hybrid solids with copper complex framework and their catalytic activity for the S-arylation and the azide–alkyne cycloaddition reactions. ACS Catalysis 1(2):147–158. doi: 10.1021/cs100086y CrossRefGoogle Scholar
  44. 44.
    Lu C, Chang F (2011) Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for heck reactions. ACS Catalysis 1:481–488CrossRefGoogle Scholar
  45. 45.
    Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. Chem Rev 105(1):115–184. doi: 10.1021/cr040083s CrossRefGoogle Scholar
  46. 46.
    Wachs IE, Routray K (2012) Catalysis science of bulk mixed oxides. ACS Catalysis 2(6):1235–1246. doi: 10.1021/cs2005482 CrossRefGoogle Scholar
  47. 47.
    Copéret C (2007) Design and understanding of heterogeneous alkene metathesis catalysts. J Chem Soc Dalton Trans 47:5498–5504CrossRefGoogle Scholar
  48. 48.
    Anpo M, Kim T-H, Matsuoka M (2009) The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules—The role of their excited states and reaction mechanisms. Catal Today 142(3–4):114–124CrossRefGoogle Scholar
  49. 49.
    Feher FJ, Walzer JF (1991) Synthesis and characterization of vanadium-containing silsesquioxanes. Inorg Chem 30(8):1689–1694CrossRefGoogle Scholar
  50. 50.
    Wada K, Itayama N, Watanabe N, Bundo M, Kondo T, T-a Mitsudo (2004) Synthesis and catalytic activity of group 4 metallocene containing silsesquioxanes bearing functionalized silyl groups. Organometallics 23(24):5824–5832CrossRefGoogle Scholar
  51. 51.
    Wada K, Nakashita M, Yamamoto A, Wada H, Mitsudo T (1998) Activities of polyhedral vanadium-containing silsesquioxane-based catalysts for photo-assisted oxidation of hydrocarbons. Res Chem Intermed 24(5):515–527CrossRefGoogle Scholar
  52. 52.
    Wang P, Anderko A (2001) Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilib 186:103–122CrossRefGoogle Scholar
  53. 53.
    Ernzerhof M, Perdew PJ (1998) Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys 109:3313–3320CrossRefGoogle Scholar
  54. 54.
    Adamo C, Barone V (2000) Inexpensive and accurate predictions of optical excitations in transition-metal complexes: the TDDFT/PBE0 route. Theor Chem Acc 105:169–172CrossRefGoogle Scholar
  55. 55.
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124(094107):1–15Google Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, aramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  57. 57.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRefGoogle Scholar
  58. 58.
    Furche F, Rappoport D (2005) Density functional methods for excited states: equilibrium structure and electronic spectra. In: Olivucci M (ed) Theoretical and computational chemistry, vol 16. Elsevier, Amsterdam, pp 93–128Google Scholar
  59. 59.
    Bosch E, Rived F, Rosés M (1996) Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 4. Preferential solvation of solvatochromic indicators in mixtures of 2-methylpropan-2-ol with hexane, benzene, propan-2-ol, ethanol and methanol. J Chem Soc Perkin Trans 2(2):2177–2184CrossRefGoogle Scholar
  60. 60.
    Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. Their estimation and correlation. McGraw-Hill, New YorkGoogle Scholar
  61. 61.
    Marcus Y (1994) Use of chemical probes for the characterization of solvent mixtures. Part 1. Completely non-aqueous mixtures. J Chem Soc Perkin Trans 2:1015–1021CrossRefGoogle Scholar
  62. 62.
    Marcus Y (1994) The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J Chem Soc Perkin Trans 2:1751–1758CrossRefGoogle Scholar
  63. 63.
    Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72CrossRefGoogle Scholar
  64. 64.
    Shen M, Resasco DE (2009) Emulsions stabilized by carbon nanotube–silica nanohybrids. Langmuir 25:10843–10851CrossRefGoogle Scholar
  65. 65.
    Yoon Y, Rousseau R, Weber RS, Lercher JA (2014) First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J Am Chem Soc 136:10287–10298CrossRefGoogle Scholar
  66. 66.
    Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280:8–16CrossRefGoogle Scholar
  67. 67.
    Wang H, Borguet E, Eisenthal KB (1997) Polarity of liquid interfaces by second harmonic generation spectroscopy. J Phys Chem A 101(4):713–718CrossRefGoogle Scholar
  68. 68.
    Wang H, Borguet E, Eisenthal KB (1998) Generalized interface polarity scale based on second harmonic spectroscopy. J Phys Chem B 102(25):4927–4932CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (Outside USA) 2015

Authors and Affiliations

  • Birgit Schwenzer
    • 1
  • Lelia Cosimbescu
    • 2
  • Vassiliki-Alexandra Glezakou
    • 2
  • Abhijeet J. Karkamkar
    • 2
  • Zheming Wang
    • 1
  • Robert S. Weber
    • 2
    Email author
  1. 1.Physical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations