Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

  • 927 Accesses

  • 3 Citations


Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing in a nitrogen atmosphere. Morphology, structure and composition of the N-doped TiO2 nanotube array films were investigated by FE-SEM, XPS, UV–Vis and XRD. The effect of annealing temperature, heating rate and annealing time on the morphology, structure, and photo-electrochemical property of the N-doped TiO2 nanotube array films were investigated. A design of experiments method was applied in order to minimize the number of experiments and obtain a statistical model for this system. From the modelling results, optimum values for the influential factors were obtained in order to achieve the maximum PCE. The optimized experiment resulted in 7.42 % PCE which was within 95 % confidence interval of the predicted value by the model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Li XH, Liu WM, Li HL (2005) Template synthesis of well-aligned titanium dioxide nanotubes. Appl Phys A 80:317–320

  2. 2.

    Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2:45–59

  3. 3.

    Lai Y-K, Huang J-Y, Zhang H-F, Subramaniam V-P, Tang Y-X, Gong D-G, Sundar L, Sun L, Chen Z, Lin C-J (2010) Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J Hazard Mater 184:855–863

  4. 4.

    Zheng Q, Zhou B, Bai F, Li L, Jin Z, Zhang J, Li J, Liu Y, Cai W, Zhu X (2008) Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv Mater 20:1044–1049

  5. 5.

    Zhang Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35:8528–8535

  6. 6.

    Allam NK, Alamgir F, El-Sayed MA (2010) Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays. ACS Nano 4:5819–5826

  7. 7.

    Gong J, Lai Y, Lin C (2010) Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochim Acta 55:4776–4782

  8. 8.

    Mishra A, Banerjee S, Mohapatra SK, Graeve OA, Misra M (2008) Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage. Nanotechnology 19:445607

  9. 9.

    Rather S, Mehraj-ud-din N, Zacharia R, Hwang SW, Kim AR, Nahm KS (2009) Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes. Int J Hydrogen Energy 34:961–966

  10. 10.

    Yang L, Chen B, Luo S, Li J, Liu R, Cai Q (2010) Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environ Sci Technol 44:7884–7889

  11. 11.

    Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater 185:77–85

  12. 12.

    Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett 433:323–326

  13. 13.

    Xu C, Shaban YA, Ingler WB Jr, Khan SUM (2007) Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting. Solar Energy Mater Solar Cells 91:938–943

  14. 14.

    Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D 39:2361–2366

  15. 15.

    Dong F, Zhao W, Wu Z (2008) Characterization and photocatalytic activities of C, N and S Co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology 19:365607

  16. 16.

    Ghicov A, Macak JM, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P (2006) Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. NanoLett 6:1080–1082

  17. 17.

    Ghicov A, Macak JM, Tsuchiya H, Kunze J, Haeublein V, Kleber S, Schmuki P (2006) TiO2 nanotube layers: dose effects during nitrogen doping by ion implantation. ChemPhysLett 419:426–429

  18. 18.

    Macak JM, Ghicov A, Hahn R, Tsuchiya H, Schmuki P (2006) Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thickness. J Mater Res 21:2824–2828

  19. 19.

    Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8:544–548

  20. 20.

    Wang Y, Feng C, Jin Z, Zhang J, Yang J, Zhang S (2006) A novel N-doped TiO2 with high visible light photocatalytic activity. J Mol Catal A: Chem 260:1–3

  21. 21.

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Sci 293:269–271

  22. 22.

    Okato T, Sakano T, Obara M (2005) Suppression of photocatalytic efficiency in highly N-doped anatase films. Phys Rev B: Condens Matter 72:1–6

  23. 23.

    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

  24. 24.

    Arienzo MD, Siedl N, Sternig A, Scotti R, Morazzoni F, Bernardi J, Diwald O (2010) Solar light and dopant-induced recombination effects: photoactive nitrogen in TiO2 as a case study. J Phys Chem C 114:18067–18072

  25. 25.

    Dong L, Cao G, Ma Y, Jia X, Ye G, Guan S (2009) Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Trans Nonferrous Metal Soc China (Eng Ed) 19:1583–1587

  26. 26.

    Han KS, Lee JW, Kang YM, Lee JY, Kang JK (2008) Nature of atomic and molecular nitrogen configurations in TiO2-xNx nanotubes and tailored energy-storage performance on selective doping of atomic N states. Small 4:1682–1686

  27. 27.

    Li J, Yun H, Lin C (2007) A photoelectrochemical study of n-doped TiO2 nanotube arrays as the photoanodes for cathodic protection of SS. J Electrochem Soc 154:C631–C636

  28. 28.

    Isimjan TT, Kazemian H, Rohani S, Ray AK (2010) Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. J Mater Chem 20:10241–10245

  29. 29.

    Isimjan TT, Ruby AE, Rohani S, Ray AK (2010) The fabrication of highly ordered and visible-light-responsive Fe-C-N-Co doped TiO2 nanotubes. Nanotechnology 21:055706

  30. 30.

    Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775

  31. 31.

    Ong KG, Varghese OK, Mor GK, Grimes CA (2005) Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. J Nanosci Nanotechnol 5:1801–1808

  32. 32.

    Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

  33. 33.

    Liu G, Li F, Wang D-W, Tang D-M, Liu C, Ma X, Lu GQ, Cheng H-M (2008) Electron field emission of a nitrogen-doped TiO2 nanotube array. Nanotechnology 19:025606

  34. 34.

    Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982

Download references


The financial support from NSERC and the Western University, London, Ontario are gratefully acknowledged. The authors also thank the Surface Science Western for excellent contribution on the characterization, Mr. Chris Van deLaar of Western University machine services for his brilliant idea on equipment design.

Author information

Correspondence to Sohrab Rohani or Ajay K. Ray.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isimjan, T.T., Trifkovic, M., Abdullahi, I. et al. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes. Top Catal 58, 114–122 (2015). https://doi.org/10.1007/s11244-014-0350-0

Download citation


  • TiO2 nanotubes
  • Photoelectrochemical water splitting efficiency (PCE)
  • UV irradiation
  • Anodization
  • Design of experiments (DOE)
  • Optimization