Topics in Catalysis

, Volume 58, Issue 1, pp 57–66 | Cite as

Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction

  • Rishi Parajuli
  • James B. Gerken
  • Kunttal Keyshar
  • Ian Sullivan
  • Narayanappa Sivasankar
  • Kyle Teamey
  • Shannon S. Stahl
  • Emily Barton Cole
Original Paper


A fully integrated electrochemical cell for co-production of formate (HCOO) and oxygen (O2) from carbon dioxide (CO2) and water using only earth-abundant elements has been developed. The process converts CO2 to formate using electrons derived from anodic water oxidation. A novel cathodic catalyst system, consisting of a tin (Sn) cathode in combination with the soluble heterocycle 2-picoline, was identified for CO2 reduction. Water oxidation takes place at a fluorine-doped tin oxide electrode coated with an electrodeposited cobalt oxide (CoOx) electrocatalyst. Use of 2-picoline as a soluble cathodic co-catalyst lowered the overpotential and enhanced the stability of the Sn-mediated CO2 reduction process. Fluorophosphate served as a redox-stable electrolyte to buffer the anode compartment at mildly acidic pH (~ 5 to 5.5), thereby stabilizing the CoOx electrocatalyst and supporting efficient water oxidation. The complete electrochemical cell maintained a stable cell voltage of less than 3 V over 5 days, with an average formate faradaic yield of 34 %. These results are presented together with an economical analysis of large-scale solar-driven production of formate/formic acid from CO2 and water.


Water oxidation CO2 electroreduction Electrocatalyst Formic acid Cobalt oxide Tin 



The authors would like to thank Dr. Charles G. Fry for advice on NMR measurements, Dr. Liliana Lopez Aguilar for assistance with IC-MS analysis, and George Leonard for assistance with GC analysis. Research conducted in the Stahl lab was partially supported by an NSF CCI Grant CHE-0802907 and by NMR facility support under NSF Grant CHE-9629688.


  1. 1.
    Michel H (2012) Angew Chem Int Ed 51:2516–2518CrossRefGoogle Scholar
  2. 2.
    Coumou D, Rahmstorf S (2012) Nat Clim Change 2:491–496Google Scholar
  3. 3.
    Frese Jr KW (1993) In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Halmann MM, Steinberg M (1999) In: Halmann MM, Steinberg M (eds) Greenhouse gas carbon dioxide mitigation: science and technology. Lewis Publishers, Boca Raton, FloridaGoogle Scholar
  5. 5.
    DuBois DL (2006) In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  6. 6.
    Barton Cole E, Bocarsly AB (2010) In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, WeinheimGoogle Scholar
  7. 7.
    Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Annu Rev Phys Chem 63:541–569CrossRefGoogle Scholar
  8. 8.
    Costenin C, Robert M, Savéant J-M (2013) Chem Soc Rev 42:2423–2436CrossRefGoogle Scholar
  9. 9.
    Seshadri G, Lin C, Bocarsly AB (1994) J Electroanal Chem 372:145–150CrossRefGoogle Scholar
  10. 10.
    Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342–6344CrossRefGoogle Scholar
  11. 11.
    Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) J Am Chem Soc 132:11539–11551CrossRefGoogle Scholar
  12. 12.
    Morris AJ, McGibbon RT, Bocarsly AB (2011) ChemSusChem 4:191–196CrossRefGoogle Scholar
  13. 13.
    Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM, Lakkaraju PS, Zeitler EL, Shaw TW (2012) ACS Catal 2:1684–1692CrossRefGoogle Scholar
  14. 14.
    Keith JA, Carter EA (2012) J Am Chem Soc 134:7580–7583CrossRefGoogle Scholar
  15. 15.
    Lim C-H, Holder AM, Musgrave CB (2013) J Am Chem Soc 135:142–154CrossRefGoogle Scholar
  16. 16.
    Keith JA, Carter EA (2013) Chem Sci 4:1490–1496CrossRefGoogle Scholar
  17. 17.
    Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) J Phys Chem Lett 4:745–748CrossRefGoogle Scholar
  18. 18.
    Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 14:1695–1698CrossRefGoogle Scholar
  19. 19.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39:1833–1839CrossRefGoogle Scholar
  20. 20.
    Köleli F, Atilan T, Palamut N, Gizir AM, Aydin R, Hamann CH (2003) J Appl Electrochem 33:447–450CrossRefGoogle Scholar
  21. 21.
    Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Bull Chem Soc Jpn 63:2459–2462CrossRefGoogle Scholar
  22. 22.
    Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) J Electrochem Soc 137:1772–1778CrossRefGoogle Scholar
  23. 23.
    Ikeda S, Takagi T, Ito K (1987) Bull Chem Soc Jpn 60:2517–2522CrossRefGoogle Scholar
  24. 24.
    Surya Prakash GK, Viva FA, Olah GA (2013) J Power Sources 223:68–73CrossRefGoogle Scholar
  25. 25.
    Li H, Oloman C (2005) J Appl Electrochem 35:955–965CrossRefGoogle Scholar
  26. 26.
    Li H, Oloman C (2007) J Appl Electrochem 37:1107–1117CrossRefGoogle Scholar
  27. 27.
    Li H, Oloman C (2006) J Appl Electrochem 36:1105–1115CrossRefGoogle Scholar
  28. 28.
    Oloman C, Li H (2008) ChemSusChem 1:385–391CrossRefGoogle Scholar
  29. 29.
    Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) ChemSusChem 4:1301–1310CrossRefGoogle Scholar
  30. 30.
    Tilak BV, Lu PWT, Colman JE, Srinivasan S (1981) In: Bockris JO’M, Conway BE, Yeager E, White RE (eds) Comprehensive Treatise of Electrochemistry, Vol. 2. Plenum, New YorkGoogle Scholar
  31. 31.
    Rüttinger W, Dismukes GC (1997) Chem Rev 97:1–24CrossRefGoogle Scholar
  32. 32.
    Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) ChemCatChem 2:724–761CrossRefGoogle Scholar
  33. 33.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473CrossRefGoogle Scholar
  34. 34.
    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7266CrossRefGoogle Scholar
  35. 35.
    Du P, Eisenberg R (2012) Energy Environ Sci 5:6012–6021CrossRefGoogle Scholar
  36. 36.
    Singh A, Spiccia L (2013) Coord Chem Rev 257:2607–2622. doi:10.1016/j.ccr.2013.02.027
  37. 37.
    Shafirovich VYa, Strelets VV (1978) Nouv J Chim 2:199–201Google Scholar
  38. 38.
    Chen Y-WD, Noufi RN (1984) J Electrochem Soc 131:1447–1451CrossRefGoogle Scholar
  39. 39.
    Kanan MW, Nocera DG (2008) Science 321:1072–1075CrossRefGoogle Scholar
  40. 40.
    Surendranath Y, Dincă M, Nocera DG (2009) J Am Chem Soc 131:2615–2620CrossRefGoogle Scholar
  41. 41.
    Gerken JB, Landis EC, Hamers RJ, Stahl SS (2010) ChemSusChem 3:1176–1179CrossRefGoogle Scholar
  42. 42.
    Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH, Britt RD, Stahl SS (2011) J Am Chem Soc 133:14431–14442CrossRefGoogle Scholar
  43. 43.
    Berner RA, Canfield DE (1989) Am J Sci 289:333–361CrossRefGoogle Scholar
  44. 44.
    Falkowski PG, Barber RT, Smetacek V (1998) Science 281:200–206CrossRefGoogle Scholar
  45. 45.
    Yotsuhashi S, Deguchi M, Hashiba H, Zenitani Y, Hinogami R, Yamada Y, Ohkawa K (2012) Appl Phys Lett 100:243904CrossRefGoogle Scholar
  46. 46.
    Tavares S (2010) Bill Seeks to Expedite Land Leases to Solar Developers, Las Vegas SunGoogle Scholar
  47. 47.
    Transmission Losses (2013) U.S. Energy Information Administration, Washington, DC Accessed 29 June 2013
  48. 48.
    Nexant Chem Systems (2013) PERP Report: Chlor-Alkali Technology, 01/02S4. Nexant Chem Systems, New York, p 59Google Scholar
  49. 49.
    Electric Power Monthly (2013) U.S. Energy Information Administration, Washington, DC Accessed 18 Jun 2013
  50. 50.
    Kaczur JJ, Cawlfield DW, Woodard Jr KE, Duncan BL, U.S. Patent 5,296,108, 22 Mar 1994Google Scholar
  51. 51.
    Naam R (2011) Smaller, cheaper, faster: does Moore’s law apply to solar cells? Scientific American, New York. Accessed 18 Jun 2013
  52. 52.
    A number of relevant reviews and studies by others have been published since the present manuscript was submitted in July 2013. For selected examples, see references [53–65]Google Scholar
  53. 53.
    Lu X, Leung DYC, Wang H, Leung MKH, Xuan J (2014) ChemElectroChem 1:836–849Google Scholar
  54. 54.
    Medina-Ramos J, DiMeglio JL, Rosenthal J (2014) J Am Chem Soc 136:8361–8367Google Scholar
  55. 55.
    Zhang L, Zhu D, Nathanson GM, Hamers RJ (2014) Angew Chem Int Ed 53:9746–9750Google Scholar
  56. 56.
    Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Chem Soc Rev 43:7501–7519Google Scholar
  57. 57.
    Lacy DC, McCrory CCL, Peters JC (2014) Inorg Chem 53:4980–4988Google Scholar
  58. 58.
    Kang P, Zhang S, Meyer TJ, Brookhart M (2014) Angew Chem Int Ed 53:8709–8713Google Scholar
  59. 59.
    Risch M, Klingan K, Zaharieva I, Dau H (2014) In: Llobet A (ed) Molecular water oxidation catalysis: a key topic for new sustainable energy conversion schemes. John Wiley & Sons, Ltd., ChichesterGoogle Scholar
  60. 60.
    Bloor LG, Molina PI, Symes MD, Cronin L (2014) J Am Chem Soc 136:3304–3311Google Scholar
  61. 61.
    Joya KS, Takanabe K, de Groot HJM (2014) Adv Energy Mater. doi:10.1002/aenm.201400252
  62. 62.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupius M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658Google Scholar
  63. 63.
    Bediako DK, Costentin C, Jones EC, Nocera DG, Savéant J-M (2013) J Am Chem Soc 135:10492–10502Google Scholar
  64. 64.
    Costentin C, Canales JC, Haddou B, Savéant J-M (2013) J Am Chem Soc 135:17671–17674Google Scholar
  65. 65.
    Portenkirchner E, Enengl C, Enengl S, Hinterberger G, Schlager S, Apaydin D, Neugebauer H, Knör G, Sariciftci NS (2014) ChemElectroChem 1:1543–1548Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rishi Parajuli
    • 1
  • James B. Gerken
    • 2
  • Kunttal Keyshar
    • 1
    • 3
  • Ian Sullivan
    • 1
    • 4
  • Narayanappa Sivasankar
    • 1
  • Kyle Teamey
    • 1
  • Shannon S. Stahl
    • 2
  • Emily Barton Cole
    • 1
  1. 1.Liquid LightMonmouth JunctionUSA
  2. 2.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Mechanical Engineering & Materials ScienceRice UniversityHoustonUSA
  4. 4.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations