Topics in Catalysis

, Volume 58, Issue 1, pp 15–22 | Cite as

Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights

  • Emily E. Barton Cole
  • Maor F. Baruch
  • Robert P. L’Esperance
  • Michael T. Kelly
  • Prasad S. Lakkaraju
  • Elizabeth L. Zeitler
  • Andrew B. Bocarsly
Original Paper

Abstract

A series of substituted pyridiniums were examined for their catalytic ability to electrochemically reduce carbon dioxide to methanol. It is found that in general increased basicity of the nitrogen of the amine and higher LUMO energy of the pyridinium correlate with enhanced carbon dioxide reduction. The highest faradaic yield for methanol production at a platinum electrode was 39 ± 4 % for 4-aminopyridine compared to 22 ± 2 % for pyridine. However, 4-tertbutyl and 4-dimethylamino pyridine showed decreased catalytic behavior, contrary to the enhanced activity associated with the increased basicity and LUMO energy, and suggesting that steric effects also play a significant role in the behavior of pyridinium electrocatalysts. Mechanistic models for the the reaction of the pyridinium with carbon dioxide are considered.

Keywords

Pyridinium catalyzed CO2 Reduction CO2 to methanol conversion Electrochemical CO2 reduction 

Supplementary material

11244_2014_343_MOESM1_ESM.pdf (572 kb)
Supplementary material 1 (PDF 572 kb)

References

  1. 1.
    Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496Google Scholar
  2. 2.
    Frese JKW (1993) Electrochemical reduction of CO2 at solid electrodes. In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, pp 145–161CrossRefGoogle Scholar
  3. 3.
    Halmann MM, Steinberg M (1999) Electrochemical reduction of CO2, in greenhouse gas carbon dioxide mitigation: science and technology. In: Steinberg M (ed) Halmann MM. Lewis Publishers, Boca Raton, pp 411–420Google Scholar
  4. 4.
    DuBois DL (2006) Carbon. In: Bard AJ, Stratmann J (eds) Encylopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co, Weinheim, p 202Google Scholar
  5. 5.
    Barton-Cole E, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  6. 6.
    Bandi A, Kuhne HM (1992) Electrochemical reduction of carbon-dioxide in water—analysis of reaction-mechanism on ruthenium–titanium-oxide. J Electrochem Soc 139(6):1605–1610CrossRefGoogle Scholar
  7. 7.
    Frese KW, Leach S (1985) Electrochemical reduction of carbon-dioxide to methane, methanol, and Co on Ru Electrodes. J Electrochem Soc 132(1):259–260CrossRefGoogle Scholar
  8. 8.
    Popic JP, AvramovIvic ML, Vukovic NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421(1–2):105–110CrossRefGoogle Scholar
  9. 9.
    Qu JP et al (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580CrossRefGoogle Scholar
  10. 10.
    Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372(1–2):145–150CrossRefGoogle Scholar
  11. 11.
    Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6345CrossRefGoogle Scholar
  12. 12.
    Yan Y et al (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023CrossRefGoogle Scholar
  13. 13.
    Costentin C et al (2013) Electrochemistry of acids on platinum. application to the reduction of carbon dioxide in the presence of pyridinium ion in water. J Am Chem Soc 135(47):17671–17674CrossRefGoogle Scholar
  14. 14.
    Cole EB et al (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551CrossRefGoogle Scholar
  15. 15.
    Ertem MZ et al (2013) Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J Phys Chem Lett 4(5):745–748CrossRefGoogle Scholar
  16. 16.
    Liao K et al. (2014) Electrochemical reduction of aqueous imidazolium on Pt (111) by proton coupled electron transfer. Top Catal. doi:10.1007/s11244-014-0340-2
  17. 17.
    Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112(2):275–279CrossRefGoogle Scholar
  18. 18.
    Gaussian 03, 2004, Gaussian Inc.: Wallingford, CT.Google Scholar
  19. 19.
    Baumgartel H, Retzlav KJ (1984) In: Bard AJ, Lund H (eds) Encyclopedia of electrochemistry of the elements. Taylor & Francis, New York, p 194Google Scholar
  20. 20.
    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography—single scan + cyclic methods applied to reversible irreversible + kinetic systems. Anal Chem 36(4):706–723CrossRefGoogle Scholar
  21. 21.
    Ohmstead ML, Nicholso RS (1969) Cyclic voltammetry theory for disproportionation reaction and spherical diffusion. Anal Chem 41(6):862–870CrossRefGoogle Scholar
  22. 22.
    Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO(2) reduction. Chemsuschem 4(2):191–196CrossRefGoogle Scholar
  23. 23.
    Keith JA, Carter EA (2012) Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. J Am Chem Soc 134(18):7580–7583CrossRefGoogle Scholar
  24. 24.
    Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emily E. Barton Cole
    • 1
    • 2
  • Maor F. Baruch
    • 1
  • Robert P. L’Esperance
    • 1
  • Michael T. Kelly
    • 1
  • Prasad S. Lakkaraju
    • 1
    • 3
    • 4
  • Elizabeth L. Zeitler
    • 1
  • Andrew B. Bocarsly
    • 1
  1. 1.Frick Chemical LaboratoryPrinceton UniversityPrincetonUSA
  2. 2.11 Deerpark Dr. Suite 121Monmouth JunctionUSA
  3. 3.Visiting Research ScientistPrinceton UniversityPrincetonUSA
  4. 4.Georgian Court UniversityLakewoodUSA

Personalised recommendations