Topics in Catalysis

, Volume 58, Issue 1, pp 2–14 | Cite as

Reaction Mechanisms in the Direct Carboxylation of Alcohols for the Synthesis of Acyclic Carbonates

  • Michele Aresta
  • Angela Dibenedetto
  • Antonella Angelini
  • Imre Pápai
Original Paper


Dialkylcarbonates, (RO)2CO, can be prepared from alcohols and CO2. Such reaction is clean (water is the co-product) but thermodynamically disfavored. In principle, the reaction mechanism of formation of carbonates requires the acid–base activation of alcohols. Existing data support that the first step is the formation of the alkoxo group RO that reacts with CO2 to give the hemicarbonate moiety ROC(O)O. The latter converts into the relevant carbonate (RO)2CO following different pathways depending on the catalyst used. DFT calculations have been used in a few cases to support the reaction mechanism. Transition states relevant to various mechanistic scenarios have been identified. The results indicated that the relative energies of these transition states depend on the nature of the alkyl group and the molecularity of the reactive step. Organic catalysts, homogeneous-, heterogenized- and heterogeneous-metal systems are discussed in this paper and the known relevant mechanisms compared. Water represents a serious limitation to equilibrium shift to the right and can affect the catalysts. Techniques used to remove water are also discussed.


Organic acyclic carbonates Alcohols carboxylation Reaction mechanism Water removal 



One of us (AA) thanks TOTAL for a partial financial support to part of the present work.


  1. 1.
    Delledonne D, Rivetti F, Romano U (2001) Appl Catal A: Gen 221(1–2):241–251CrossRefGoogle Scholar
  2. 2.
    Shaikh AAG, Sivaram S (1996) Chem Rev 96:951–976 and references thereinCrossRefGoogle Scholar
  3. 3.
    Stinson SC (2001) C&EN 79(15):15–16Google Scholar
  4. 4.
    Serini V (1992) Ullmann’s Enciclopedia of Industrial Chemistry, VCH Publishers, Weinheim A5: 197–201Google Scholar
  5. 5.
    Pacheco MA, Marshall CL (1997) Energy Fuels 11(1):2–29CrossRefGoogle Scholar
  6. 6.
    Aresta M, Dibenedetto A (2003) In: Aresta M (ed) Carbon Dioxide: Recovery and Utilization. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 211–260CrossRefGoogle Scholar
  7. 7.
    TEXACO study, 2001Google Scholar
  8. 8.
    Fr Patent (1973) 7 pp FR 2163884 19730831 SNPEGoogle Scholar
  9. 9.
    Damle SB, Othmer K (1993) Enciclopedia of Chemical Technology, 4th Ed. 5: 77Google Scholar
  10. 10.
    Romano U, Tesei R, Massi MM, Rebora P (1980) Ind Eng Chem Prod Res Dev 19(3):396–403CrossRefGoogle Scholar
  11. 11.
    Romano U (1993) Chim Ind Milan 75(4):303–306Google Scholar
  12. 12.
    Nishihira K, Tanaka S, Kodama K, Kaneko T (1992) Eur Pat Appl EP 501:507Google Scholar
  13. 13.
    Perrotti E, Cipriani G (1974) US Patent 3846468Google Scholar
  14. 14.
    Romano U, Tesei R, Cipriani G, Micucci L (1980) US Patent 4218391Google Scholar
  15. 15.
    Matsuzaki T, Nakamura A (1997) Catal Surv Jpn 1:77–88CrossRefGoogle Scholar
  16. 16.
    Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225–229CrossRefGoogle Scholar
  17. 17.
    Aresta M, Dibenedetto A, Pastore C (2003) Inorg Chem 42(10): 3256–3261 and references thereinGoogle Scholar
  18. 18.
    Ballivet-Tkatchenko D, Douteau O, Stutzmann S (2000) Organomet 19:4563–4567CrossRefGoogle Scholar
  19. 19.
    Isaacs NS, O’Sullivan B, Verhaelen C (1999) Tetrahedron 55:11949–11956CrossRefGoogle Scholar
  20. 20.
    Aresta M, Dibenedetto A, Giannoccaro P, Pastore C, Pàpai I, Schubert G (2005) J of Org Chem 70(16):6177–6186CrossRefGoogle Scholar
  21. 21.
    Sakakura T, Saito Y, Okano M, Choi J-C, Sako T (1998) J Org Chem 63:7095–7096CrossRefGoogle Scholar
  22. 22.
    Sakakura T, Saito Y, Choi J-C, Masuda T, Sako T, Oriyama T (1999) J Org Chem 64:4506–4508CrossRefGoogle Scholar
  23. 23.
    Sakakura T, Saito Y, Choi J-C, Sako T (2000) Polyhedron 19:573–576CrossRefGoogle Scholar
  24. 24.
    Aresta M, Dibenedetto A, Stufano P, Aresta BM, Maggi S, Papai I, Rokob TA, Gabriele B (2010) Dalton Trans 39:6985–6992CrossRefGoogle Scholar
  25. 25.
    Aresta M, Dibenedetto A, Stufano P, (2009) IP MI 2009A001221Google Scholar
  26. 26.
    Yamazaki N, Nakahama S, Higashi F (1979) Ind Eng Chem Prod Res Dev 18:249–252CrossRefGoogle Scholar
  27. 27.
    Kizlink J, Pastucha I (1995) Collect Czech Chem Commun 60:687–692CrossRefGoogle Scholar
  28. 28.
    Choi J-C, Sakakura T, Sako T (1999) J Am Chem Soc 121:3793–3794CrossRefGoogle Scholar
  29. 29.
    Kirumakki SR, Nagaraju N, Murthy KVVSBSR, Narayanan S (2002) Appl Catal A: Gen 226(1–2):175–182CrossRefGoogle Scholar
  30. 30.
    Ballivet-Tkatchenko D, Jerphagnon T, Ligabue R, Plasseraud L, Poinsot D (2003) Appl Catal A: Gen 255:93–99CrossRefGoogle Scholar
  31. 31.
    Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H (2006) Catal Today 115:80–87CrossRefGoogle Scholar
  32. 32.
    Kohno K, Choi J-C, Ohshima Y, Yili A, Yasuda H, Sakakura T (2008) J Organomet Chem 693:1389–1392CrossRefGoogle Scholar
  33. 33.
    Ballivet-Tkatchenko D, Chermette H, Plasseraud L, Walter O (2006) Dalton Trans 43:5167–5175CrossRefGoogle Scholar
  34. 34.
    Kohno K, Choi J-C, Ohshima Y, Yasuda H, Sakakura T (2008) ChemSusChem 1:186–188CrossRefGoogle Scholar
  35. 35.
    Dibenedetto A, Pastore C, Aresta M (2006) Cat Today 115:88–94CrossRefGoogle Scholar
  36. 36.
    Aresta M, Dibenedetto A, Pastore C, Pàpai I, Schubert G (2006) Top in Catal 40(1–4):71–81CrossRefGoogle Scholar
  37. 37.
    Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S, De Giglio E (2008) Catal Today 137:125–131CrossRefGoogle Scholar
  38. 38.
    Tomishige K, Yoshida Y, Arai Y, Kado S, Kunimori K (2006) Catal Today 115:95–101CrossRefGoogle Scholar
  39. 39.
    Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) J Catal 192:355–362CrossRefGoogle Scholar
  40. 40.
    Zhong SH, Kong LL, Li HS, Xiao XF (2002) Ranliao Huaxue Xuebao 30(5):454–458Google Scholar
  41. 41.
    Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) J Phys Chem B 105:10653–10658CrossRefGoogle Scholar
  42. 42.
    Ikeda Y, Sakaihori T, Tomishige K, Fujimoto K (2000) Catal Lett 66:59–62CrossRefGoogle Scholar
  43. 43.
    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wie W (2009) Catal Today 148:221–231CrossRefGoogle Scholar
  44. 44.
    Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2011) Catal Lett 76:71–74CrossRefGoogle Scholar
  45. 45.
    Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E (2003) Appl Catal A: Gen 256:203–212CrossRefGoogle Scholar
  46. 46.
    Allaoui LA, Acuissi A (2006) J Mol Catal A: Chem 259:281–285CrossRefGoogle Scholar
  47. 47.
    Jung KT, Bell AT (2001) J Catal 204:339–347CrossRefGoogle Scholar
  48. 48.
    Aresta M, Dibenedetto A, Pastore C, Angelini A, Aresta B, Pápai I (2010) J Catal 269:44–52CrossRefGoogle Scholar
  49. 49.
    Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G (1999) Catal Today 52:53–63CrossRefGoogle Scholar
  50. 50.
    Dibenedetto A, Aresta M, Angelini A, Ethiraj J, Aresta BM (2012) Chem-A Eur J 18(33):10324–10334CrossRefGoogle Scholar
  51. 51.
    Aresta M, Dibenedetto A, Nocito F, Pastore C (2008) Inorg Chimica Acta 361:3215–3220CrossRefGoogle Scholar
  52. 52.
    Aresta M, Dibenedetto A, Nocito F, Angelini A, Gabriele B (2010) Appl Catal A: Gen 387:113–118CrossRefGoogle Scholar
  53. 53.
    Fan B, Zhang J, Li R, Fan W (2008) Catal Lett 121:297–302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michele Aresta
    • 1
  • Angela Dibenedetto
    • 1
    • 2
  • Antonella Angelini
    • 1
    • 2
  • Imre Pápai
    • 3
  1. 1.CIRCCBariItaly
  2. 2.Department of ChemistryUniversity of BariBariItaly
  3. 3.Research Center for Natural Sciences, HASBudapestHungary

Personalised recommendations