Topics in Catalysis

, Volume 58, Issue 1, pp 46–56 | Cite as

Cluster Models for Studying CO2 Reduction on Semiconductor Photoelectrodes

  • John A. Keith
  • Ana B. Muñoz-García
  • Martina Lessio
  • Emily A. Carter


Sunlight-powered CO2-photoelectroreduction is a promising and potentially sustainable route to recycle CO2 byproducts back into energy-dense liquid fuels. One of the most intriguing processes known to date is the pyridinium-catalyzed CO2 reduction on p-type GaP photoelectrodes, where conversion to methanol has reported faradaic efficiencies nearing 100 %. Modeling this reactive environment requires understanding energetics of differently charged species at semiconductor electrodes, so we develop a cluster model and benchmark binding energies from it to those from Kohn–Sham density functional theory calculations that employ periodic boundary conditions. We then use this cluster model to theoretically predict structures and binding energies for charged and neutral adsorbates on the GaP(110) surface with and without the presence of van der Waals interactions and implicit solvation. We discuss the relative magnitudes of binding energy contributions for different adsorbates considered relevant in this CO2 reduction process and provide details showing pitfalls when using cluster models.


Carbon dioxide reduction Gallium phosphide photoelectrodes Density functional theory calculations 



Funding from the DOD-MURI program under AFOSR Award No. FA9550-10-1-057 is gratefully acknowledged as well as computer time on the EINSTEIN system at the Navy DoD Supercomputing Resource Center and the Office of Information Technology’s High Performance Computing Center at Princeton University. We thank Prof. Andrew Bocarsly and his group for helpful discussions. We thank Andrew Ritzmann for his assistance running some calculations.


  1. 1.
    Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881–12898CrossRefGoogle Scholar
  2. 2.
    Olah GA, Goeppert A, Prakash GKS (2006) Beyond Oil and Gas: The Methanol Economy, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Hori Y (2008) In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern Aspects of Electrochemistry. Springer, New York, pp 89–189CrossRefGoogle Scholar
  4. 4.
    Liao P, Carter EA (2013) Chem Soc Rev 42:2401–2422CrossRefGoogle Scholar
  5. 5.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99CrossRefGoogle Scholar
  6. 6.
    Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342–6344CrossRefGoogle Scholar
  7. 7.
    Barton Cole E, Lakkaraju PS, Rampulla DM et al (2010) J Am Chem Soc 132:11539–11551CrossRefGoogle Scholar
  8. 8.
    Keith JA, Carter EA (2012) J Am Chem Soc 134:7580–7583CrossRefGoogle Scholar
  9. 9.
    Keith JA, Carter EA (2013) Chem Sci 4:1490–1496CrossRefGoogle Scholar
  10. 10.
    Muñoz-García AB, Carter EA (2012) J Am Chem Soc 134:13600–13603CrossRefGoogle Scholar
  11. 11.
    Morris AJ, McGibbon RT, Bocarsly AB (2011) ChemSusChem 4:191–196CrossRefGoogle Scholar
  12. 12.
    Bocarsly AB, Gibson QD, Morris AJ et al (2012) ACS Catal 2:1684–1692CrossRefGoogle Scholar
  13. 13.
    Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) J Phys Chem Lett 4:745–748CrossRefGoogle Scholar
  14. 14.
    Lim C-H, Holder AM, Musgrave CB (2012) J Am Chem Soc 135:142–154CrossRefGoogle Scholar
  15. 15.
    Tossell JA (2011) Comput Theor Chem 977:123–127CrossRefGoogle Scholar
  16. 16.
    Tompkins PC, Schmidt CLA (1942) J Biol Chem 143:643–653Google Scholar
  17. 17.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  18. 18.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  19. 19.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  21. 21.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  23. 23.
    Kresse G, Furthmüller J (1996) Comp Mat Sci 6:15–50CrossRefGoogle Scholar
  24. 24.
    Madelung O (1991) Semiconductors: Group IV Elements and III-V Compounds. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  26. 26.
    Gordon MS, Schmidt MW (2005) In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Theory and Applications of Computational Chemistry: The First Forty Years, 1st edn. Elsevier Science, Amsterdam, pp 1167–1189CrossRefGoogle Scholar
  27. 27.
    Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  29. 29.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  30. 30.
    Feller D (1996) J Comput Chem 17:1571–1586CrossRefGoogle Scholar
  31. 31.
    Schuchardt KL, Didier BT, Elsethagen T et al (2007) J Chem Inf Model 47:1045–1052CrossRefGoogle Scholar
  32. 32.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  33. 33.
    Francl MM, Pietro WJ, Hehre WJ et al (1982) J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  34. 34.
    Bergner A, Dolg M, Küchle W et al (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  35. 35.
    Cramer CJ (2004) Essentials of Computational Chemistry: Theories and Models, 2nd edn. John Wiley & Sons Inc, Hoboken, NJGoogle Scholar
  36. 36.
    Peterson KA (2003) J Chem Phys 119:11099–11112CrossRefGoogle Scholar
  37. 37.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  38. 38.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  39. 39.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  40. 40.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  41. 41.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  42. 42.
    Keith JA, Carter EA (2012) J Chem Theory Comput 8:3187–3206CrossRefGoogle Scholar
  43. 43.
    Jeon S, Kim H, Goddard WA, Atwater HA (2012) J Phys Chem C 116:17604–17612CrossRefGoogle Scholar
  44. 44.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081CrossRefGoogle Scholar
  45. 45.
    Tissandier MD, Cowen KA, Feng WY et al (1998) J Phys Chem A 102:7787–7794CrossRefGoogle Scholar
  46. 46.
    Bader RFW (1994) Atoms in Molecules: A Quantum Theory. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John A. Keith
    • 1
    • 2
  • Ana B. Muñoz-García
    • 3
  • Martina Lessio
    • 4
  • Emily A. Carter
    • 1
    • 5
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Chemical and Petroleum Engineering, Swanson School of EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
  4. 4.Department of ChemistryPrinceton UniversityPrincetonUSA
  5. 5.Program in Applied and Computational Mathematics and Andlinger Center for Energy and the EnvironmentPrinceton UniversityPrincetonUSA

Personalised recommendations