Topics in Catalysis

, Volume 58, Issue 1, pp 23–29 | Cite as

Electrochemical Reduction of Aqueous Imidazolium on Pt(111) by Proton Coupled Electron Transfer

Original Paper

Abstract

Recent electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde and methanol at potentials of ca. −600 mV versus SCE, when using a Pt working electrode in acidic pyridine solutions. In those experiments, pyridinium is thought to function as a one-electron shuttle for the underlying multielectron reduction of CO2. DFT studies proposed that the critical step of the underlying reaction mechanism is the one-electron reduction of pyridinium at the Pt surface through proton coupled electron transfer. Such reaction forms a H adsorbate that is subsequently transferred to CO2 as a hydride, through a proton coupled hydride transfer mechanism where pyridinium functions as a Brønsted acid. Here, we find that imidazolium exhibits an electrochemical behavior analogous to pyridinium, as characterized by the experimental and theoretical analysis of the initial reduction on Pt. A cathodic wave, with a cyclic voltammetric half wave potential of ca. −680 mV versus SCE, is consistent with the theoretical prediction based on the recently proposed reaction mechanism suggesting that positively charged Brønsted acids could serve as electrocatalytic one-electron shuttle species for multielectron CO2 reduction.

Keywords

Imidazolium DFT CO2 reduction Electrocatalysis PCET 

Notes

Acknowledgements

VSB acknowledges support from the AFOSR Grant# FA9550-13-1-0020 and supercomputing time from NERSC and from the high-performance computing facilities at Yale University. The authors thank M. Zahid Ertem for valuable discussions. ABB and KL acknowledges support from the Air Force Office of Scientific Research through the MURI program under AFOSR Award No. FA9550-10-1-0572 and the NSF under Award CHE-1308652.

References

  1. 1.
    Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Annu Rev Phys Chem 63:541CrossRefGoogle Scholar
  2. 2.
    Benson EE, Sathrum AJ, Smieja JM, Kubiak CP (2009) Chem Soc Rev 38:89CrossRefGoogle Scholar
  3. 3.
    Costentin C, Robert M, Savéant J-M (2013) Chem Soc Rev 42:2423CrossRefGoogle Scholar
  4. 4.
    Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) J Am Chem Soc 132:11539CrossRefGoogle Scholar
  5. 5.
    Morris AJ, McGibbon RT, Bocarsly AB (2011) ChemSusChem 4:191CrossRefGoogle Scholar
  6. 6.
    Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342CrossRefGoogle Scholar
  7. 7.
    Kamrath MZ, Relph RA, Johnson MA (2010) J Am Chem Soc 132:15508CrossRefGoogle Scholar
  8. 8.
    Boston DJ, Xu C, Armstrong DW, MacDonnell FM (2013) J Am Chem Soc 135:16252CrossRefGoogle Scholar
  9. 9.
    Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) J Am Chem Soc 135:14020CrossRefGoogle Scholar
  10. 10.
    Keith JA, Carter EA (2012) J Am Chem Soc 134:7580CrossRefGoogle Scholar
  11. 11.
    Keith JA, Carter EA (2013) Chem Sci 4:1490CrossRefGoogle Scholar
  12. 12.
    Lim C-H, Holder AM, Musgrave CB (2012) J Am Chem Soc 135:142CrossRefGoogle Scholar
  13. 13.
    Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) J Phys Chem Lett 4:745CrossRefGoogle Scholar
  14. 14.
    Barrette WC, Johnson HW, Sawyer DT (1890) Anal Chem 1984:56Google Scholar
  15. 15.
    Costentin C, Canales JC, Haddou B, Saveant J-M (2013) J Am Chem Soc 135:17671CrossRefGoogle Scholar
  16. 16.
    Canhoto C, Matos M, Rodrigues A, Geraldo MD, Bento MF (2004) J Electroanal Chem 570:63CrossRefGoogle Scholar
  17. 17.
    Peremans A, Tadjeddine A (1995) J Chem Phys 103:7197CrossRefGoogle Scholar
  18. 18.
    Tian Z-Q, Ren B (2004) Annu Rev Phys Chem 55:197CrossRefGoogle Scholar
  19. 19.
    Conway BE, Jerkiewicz G (2002) Solid State Ionics 150:93CrossRefGoogle Scholar
  20. 20.
    Ren B, Xu X, Li XQ, Cai WB, Tian ZQ (1999) Surf Sci 427–428:157CrossRefGoogle Scholar
  21. 21.
    Zolfaghari A, Chayer M, Jerkiewicz G (1997) J Electrochem Soc 144:3034CrossRefGoogle Scholar
  22. 22.
    Clavilier J, Armand D (1986) J Electroanal Chem Interfacial Electrochem 199:187CrossRefGoogle Scholar
  23. 23.
    Barber J, Morin S, Conway BE (1998) J Electroanal Chem 446:125CrossRefGoogle Scholar
  24. 24.
    Conway BE, Barber J, Morin S (1998) Electrochim Acta 44:1109CrossRefGoogle Scholar
  25. 25.
    Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Phys Chem Chem Phys 9:3241CrossRefGoogle Scholar
  26. 26.
    Skulason E, Tripkovic V, Bjorketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Norskov JK (2010) J Phys Chem C 114:18182CrossRefGoogle Scholar
  27. 27.
    Nanbu N, Kitamura F, Ohsaka T, Tokuda K (2000) J Electroanal Chem 485:128CrossRefGoogle Scholar
  28. 28.
    Wiberg KB (1955) Chem Rev 55:713CrossRefGoogle Scholar
  29. 29.
    Oh Y, Hu X (2013) Chem Soc Rev 42:2253CrossRefGoogle Scholar
  30. 30.
    Morris AJ, Meyer GJ, Fujita E (1983) Acc Chem Res 2009:42Google Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  32. 32.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys-Condens Matter 21:395CrossRefGoogle Scholar
  33. 33.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872CrossRefGoogle Scholar
  34. 34.
    Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CTGoogle Scholar
  36. 36.
    Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, ChichesterGoogle Scholar
  37. 37.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phy Chem B 113:6378CrossRefGoogle Scholar
  38. 38.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley and Sons Inc., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations