Topics in Catalysis

, Volume 57, Issue 17–20, pp 1570–1575 | Cite as

In-Situ Infrared Study of the Synthesis of Polyaniline Under Acid and Neutral pH

  • Mehdi Lohrasbi
  • Nader Hedayat
  • Steven S. C. Chuang
Original Paper

Abstract

In-situ infrared study of polyaniline (PANI) synthesis showed that the reaction initiated at pH = 1.5 produced a granule PANI microstructure via para-linked dimers of 4-aminodiphenylamine, exhibiting γ(C–H) at 802 cm−1; the reaction initiated at pH = 5.0 and 7.0 produce fiberous, and planar microstructures via ortho-linked dimers of 1,2-aminodiphenylamine and phenazine, exhibiting γ(C–H) at 738 and ν(C=N) at 1446 cm−1. The doped PANI that was produced at pH less than 5.0 showed a feature-less IR background absorption above 1600 cm−1. This absorption could correspond to π-electron delocalization as an indicative of polyaniline conductivity.

Keywords

Polyaniline (PANI) Phenazine In-situ attenuated total reflection infrared (ATR-IR) spectroscopy Self-assembly 

Notes

Acknowledgments

This research was supported by The University of Akron Faculty Research Initiation Fund, 201812.

References

  1. 1.
    Sun L-J, Liu X-X, Lau KK-T, Chen L, Gu W-M (2008) Electrochim Acta 53:3036CrossRefGoogle Scholar
  2. 2.
    Dutta D, Sarma TK, Chowdhury D, Chattopadhyay A (2005) J Colloid Interface Sci 283:153CrossRefGoogle Scholar
  3. 3.
    Nicolas-Debarnot D, Poncin-Epaillard F (2003) Anal Chim Acta 475:1CrossRefGoogle Scholar
  4. 4.
    Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Sens Actuators B 81:158CrossRefGoogle Scholar
  5. 5.
    Liu Z, Zhou J, Xue H, Shen L, Zang H, Chen W (2006) Synth Met 156:721CrossRefGoogle Scholar
  6. 6.
    Li Y, Yu Y, Wu L, Zhi J (2013) Appl Surf Sci 273:135CrossRefGoogle Scholar
  7. 7.
    Koh JK, Kim J, Kim B, Kim JH, Kim E (2011) Adv Mater 23:1641CrossRefGoogle Scholar
  8. 8.
    Kalendová A, Veselý D, Sapurina I, Stejskal J (2008) Prog Org Coat 63:228CrossRefGoogle Scholar
  9. 9.
    Bessière A, Duhamel C, Badot JC, Lucas V, Certiat MC (2004) Electrochim Acta 49:2051CrossRefGoogle Scholar
  10. 10.
    Belabed C, Abdi A, Benabdelghani Z, Rekhila G, Etxeberria A, Trari M (2013) Int J Hydrogen Energy 38:6593CrossRefGoogle Scholar
  11. 11.
    Deng F, Min L, Luo X, Wu S, Luo S (2013) Nanoscale 5:8703CrossRefGoogle Scholar
  12. 12.
    Gu L, Wang J, Qi R, Wang X, Xu P, Han X (2012) J Mol Catal A 357:19CrossRefGoogle Scholar
  13. 13.
    Macdiarmid AG, Chiang J-C, Halpern M, Huang W-S, Mu S-L, Nanaxakkara LD, Wu SW, Yaniger SI (1985) Mol Cryst Liq Cryst 121:173CrossRefGoogle Scholar
  14. 14.
    Chiang J-C, MacDiarmid AG (1986) Synth Met 13:193CrossRefGoogle Scholar
  15. 15.
    Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Synth Met 18:285CrossRefGoogle Scholar
  16. 16.
    Ferreira DC, Pires JR, Temperini MLA (2011) J Phys Chem B 115:1368CrossRefGoogle Scholar
  17. 17.
    Li J, Tang X, Li H, Yan Y, Zhang Q (2010) Synth Met 160:1153CrossRefGoogle Scholar
  18. 18.
    Šeděnková I, Trchová M, Blinova NV, Stejskal J (2006) Thin Solid Films 515:1640CrossRefGoogle Scholar
  19. 19.
    Stejskal J, Gilbert RG (2002) Pure Appl Chem 74:857CrossRefGoogle Scholar
  20. 20.
    Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008) Macromolecules 41:3530CrossRefGoogle Scholar
  21. 21.
    Sedenkova I, Trchova M, Stejskal J, Bok J (2007) Appl Spectrosc 61:1153CrossRefGoogle Scholar
  22. 22.
    Gospodinova N, Terlemezyan L (1998) Prog Polym Sci 23:1443CrossRefGoogle Scholar
  23. 23.
    Ćirić-Marjanović G, Trchová M, Stejskal J (2008) J Raman Spectrosc 39:1375CrossRefGoogle Scholar
  24. 24.
    Laslau C, Zujovic Z, Travas-Sejdic J (2010) Prog Polym Sci 35:1403CrossRefGoogle Scholar
  25. 25.
    Jiahua S, Qiang W, Runming L, Yinxu Z, Yujun Q, Congzhen Q (2013) Nanotechnology 24:175602CrossRefGoogle Scholar
  26. 26.
    Sapurina I, Riede A, Stejskal J (2001) Synth Met 123:503CrossRefGoogle Scholar
  27. 27.
    Chen B, Chuang SSC (2003) Green Chem 5:484CrossRefGoogle Scholar
  28. 28.
    Planes GA, Rodriguez JL, Miras MC, Garcia G, Pastor E, Barbero CA (2010) PCCP 12:10584CrossRefGoogle Scholar
  29. 29.
    Gée C, Douin S, Crépin C, Bréchignac P (2001) Chem Phys Lett 338:130CrossRefGoogle Scholar
  30. 30.
    Sapurina I, Stejskal J (2008) Polym Int 57:1295CrossRefGoogle Scholar
  31. 31.
    Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35:1420CrossRefGoogle Scholar
  32. 32.
    Ping Z (1996) J Chem SOC Faraday Trans 92:3063CrossRefGoogle Scholar
  33. 33.
    Trchová M, Sapurina I, Prokeš J, Stejskal J (2003) Synth Met 135–136:305CrossRefGoogle Scholar
  34. 34.
    Trchová M, Šeděnková I, Stejskal J (2005) Synth Met 154:1CrossRefGoogle Scholar
  35. 35.
    Trchová M, Stejskal J, Prokeš J (1999) Synth Met 101:840CrossRefGoogle Scholar
  36. 36.
    Trchová M, Šeděnková I, Konyushenko EN, Stejskal J, Holler P, Ćirić-Marjanović G (2006) J Phys Chem B 110:9461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mehdi Lohrasbi
    • 1
  • Nader Hedayat
    • 1
  • Steven S. C. Chuang
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringThe University of AkronAkronUSA
  2. 2.Department of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations