Topics in Catalysis

, Volume 57, Issue 17–20, pp 1490–1497 | Cite as

Porous Poly(vinyl alcohol) Composite Membranes for Immobilization of Glucose Oxidase

  • Ernesto Silva Mojica
  • Mehdi Lohrasbi
  • Steven S. C. Chuang
Original Paper

Abstract

Particle loaded porous poly(vinyl alcohol) composite membranes were selected for immobilization of glucose oxidase (GOx) for their hydrophilicity and unique interactions with amino functional groups. GOx was immobilized on the membranes by adsorption at pH values between 3.5 and 7.1. The highest adsorption loading was observed at pH 7.1 and the highest catalytic activity was observed at pH 5.1. Infrared studies showed that the highest ratio of amide I to amide II at pH 5.1 is obtained for GOx immobilized on membranes loaded with amine-functionalized micro-particles, suggesting that the conformational changes of GOx on these membranes yield to higher catalytic activity than in other supports.

Keywords

Adsorption Cross-linking Enzyme Glucose oxidase Phase inversion 

Notes

Acknowledgments

This work was supported by the FirstEnergy Advanced Energy Research Center.

References

  1. 1.
    DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Chem Soc Rev 15:6437CrossRefGoogle Scholar
  2. 2.
    Datta S, Christena LR, Rajaram Y (2013) 3. Biotech 1:1Google Scholar
  3. 3.
    Liu W, Wang L, Jiang R (2012) Top Catal 16–18:1146CrossRefGoogle Scholar
  4. 4.
    Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Biotechnol Adv 4:489CrossRefGoogle Scholar
  5. 5.
    Shao Q, Qian Y, Wu P, Zhang H, Cai C (2013) Colloids Surf B 109:115CrossRefGoogle Scholar
  6. 6.
    Schultz N, Metreveli G, Franzreb M, Frimmel FH, Syldatk C (2008) Colloids Surf B 1:39CrossRefGoogle Scholar
  7. 7.
    André J, Borneman Z, Wessling M (2013) Ind Eng Chem Res 26:8635CrossRefGoogle Scholar
  8. 8.
    Bellusci M, Francolini I, Martinelli A, D’Ilario L, Piozzi A (2012) Biomacromolecules 3:805CrossRefGoogle Scholar
  9. 9.
    Guiomar AJ, Guthrie JT, Evans SD (1999) Langmuir 4:1198CrossRefGoogle Scholar
  10. 10.
    Carbone K, Casarci M, Varrone M (1999) J Appl Polym Sci 8:1881CrossRefGoogle Scholar
  11. 11.
    Gao F, Ma G (2012) Top Catal 16–18:1114CrossRefGoogle Scholar
  12. 12.
    Gaffney D, Cooney J, Magner E (2012) Top Catal 16–18:1101CrossRefGoogle Scholar
  13. 13.
    Xiao C, Ma P, Geng N (2011) Polym Adv Technol 12:2649CrossRefGoogle Scholar
  14. 14.
    Wang J, Yao H-B, He D, Zhang C-L, Yu S-H (2012) ACS Appl Mater Interfaces 4:1963CrossRefGoogle Scholar
  15. 15.
    Zhang N, Xie J, Varadan VK (2006) Smart Mater Struct 1:123CrossRefGoogle Scholar
  16. 16.
    Djennad MH, Benachour D, Berger H, Schomaecker R (2003) Eng Life Sci 11:446CrossRefGoogle Scholar
  17. 17.
    Lozinsky VI, Zubov AL, Titova EF (1997) Enzyme Microb Technol 3:182CrossRefGoogle Scholar
  18. 18.
    Fejerskov B, Jensen BEB, Jensen NBS, Chong S-F, Zelikin AN (2012) ACS Appl Mater Interfaces 9:4981CrossRefGoogle Scholar
  19. 19.
    Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y (2006) React Funct Polym 12:1559CrossRefGoogle Scholar
  20. 20.
    Tran D, Balkus K Jr (2012) Top Catal 16–18:1057CrossRefGoogle Scholar
  21. 21.
    De QAAA, Passos ED, De BAS, Silva GS, Higa OZ, Vitolo M (2006) J Appl Polym Sci 2:1553Google Scholar
  22. 22.
    Wong F-L, Abdul-Aziz A (2008) J Chem Technol Biotechnol 1:41CrossRefGoogle Scholar
  23. 23.
    Kim S-G, Kim Y-I, Yun H-G, Lim G-T, Lee K-H (2003) J Appl Polym Sci 13:2884CrossRefGoogle Scholar
  24. 24.
    Bhattacharya M, Chaudhry S (2013) Mater Sci Eng C 33:2601CrossRefGoogle Scholar
  25. 25.
    Harton SE, Kumar SK, Yang H, Koga T, Hicks K, Lee H, Mijovic J, Liu M, Vallery RS, Gidley DW (2010) Macromolecules 7:3415CrossRefGoogle Scholar
  26. 26.
    Ha S, Wee Y, Kim J (2012) Top Catal 16–18:1181CrossRefGoogle Scholar
  27. 27.
    Rayalu S, Yadav R, Wanjari S, Prabhu C, Mushnoori S, Labhsetwar N, Satyanarayanan T, Kotwal S, Wate SR, Hong S-G, Kim J (2012) Top Catal 16–18:1217CrossRefGoogle Scholar
  28. 28.
    Silva E, Chakravartula S, Chuang SC (2012) Top Catal 7–10:580CrossRefGoogle Scholar
  29. 29.
    Lott JA, Turner K (1975) Clin Chem 12:1754Google Scholar
  30. 30.
    Ghosh Datta S, Dou X, Shibley A, Datta B (2012) Int J Biol Macromol 3:552CrossRefGoogle Scholar
  31. 31.
    Zhu S, Brown MF, Feller SE (2013) J Am Chem Soc 25:9391CrossRefGoogle Scholar
  32. 32.
    Sharma KP, Choudhury CK, Srivastava S, Davis H, Rajamohanan PR, Roy S, Kumaraswamy G (2011) J Phys Chem B 29:9059CrossRefGoogle Scholar
  33. 33.
    Bessbousse H, Rhlalou T, Verchère JF, Lebrun L (2008) J Memb Sci 2:249CrossRefGoogle Scholar
  34. 34.
    Ge L, Zhao Y-S, Mo T, Li J-R, Li P (2012) Food Control 1:188CrossRefGoogle Scholar
  35. 35.
    Seehuber A, Dahint R (2013) J Phys Chem B 23:6980CrossRefGoogle Scholar
  36. 36.
    Khodadadei F, Ghourchian H, Soltanieh M, Hosseinalipour M, Mortazavi Y (2014) Electrochim Acta 115:378CrossRefGoogle Scholar
  37. 37.
    Mukhopadhyay K, Phadtare S, Vinod VP, Kumar A, Rao M, Chaudhari RV, Sastry M (2003) Langmuir 9:3858CrossRefGoogle Scholar
  38. 38.
    Oh C, Lee J-H, Lee Y-G, Lee Y-H, Kim J-W, Kang H-H, Oh S-G (2006) Colloids Surf B 2:225CrossRefGoogle Scholar
  39. 39.
    Haouz A, Twist C, Zentz C, Tauc P, Alpert B (1998) Eur Biophys J 1:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ernesto Silva Mojica
    • 1
  • Mehdi Lohrasbi
    • 2
  • Steven S. C. Chuang
    • 1
  1. 1.Department of Polymer ScienceThe University of AkronAkronUSA
  2. 2.Department of Chemical and Biomolecular EngineeringThe University of AkronAkronUSA

Personalised recommendations