Skip to main content
Log in

Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au–Pt catalysts on three different acidic zeolite supports (H-mordenite, H-β and H-USY) was explored in a batch setup. At temperatures between 140 and 180 °C, lactic acid formation was significant and highest selectivity (60 % lactic acid at 80 % glycerol conversion) was obtained using Au–Pt/USY-600 (180 °C). A selectivity switch to glyceric acid (GLYA) was observed when the reactions were performed at 100 °C. Highest conversion and selectivity towards GLYA were obtained with Au–Pt/H-β as the catalyst (68 % selectivity at 68 % conversion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  2. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30

    Article  CAS  Google Scholar 

  3. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chem Soc Rev 37:527–549

    Article  Google Scholar 

  4. Katryniok B, Kimura H, Skrzynska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem 13:1960–1979

    Article  CAS  Google Scholar 

  5. Demirel-Gülen S, Lucas M, Claus P (2005) Catal Today 102–103:166–172

    Article  Google Scholar 

  6. Purushothaman RKP, van Haveren J, van Es DS, Melian-Cabrera I, Heeres HJ (2012) Green Chem 14:2031–2037

    Article  Google Scholar 

  7. Pagliaro M, Rossi M (2008) The future of glycerol: new uses of a versatile raw material. RSC publishing, Camridge

    Google Scholar 

  8. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  9. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 696–697

  10. Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307–317

    Article  CAS  Google Scholar 

  11. Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B 70:637–643

    Article  CAS  Google Scholar 

  12. Fan Y, Zhou C, Zhu X (2009) Catal Rev 51:293–324

    Article  CAS  Google Scholar 

  13. Katryniok B, Paul S, Dumeignil F (2010) Green Chem 12:1910–1913

    Article  CAS  Google Scholar 

  14. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  15. Kishida H, Jin F, Zhou Z, Moriya T, Enomoto H (2005) Chem Lett 34:1560–1561

    Article  CAS  Google Scholar 

  16. Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Chem Eur J 16:7368–7371

    Article  CAS  Google Scholar 

  17. ten Dam J, Kapteijn F, Djanashvili K, Hanefeld U (2011) Catal Commun 13:1–5

    Article  Google Scholar 

  18. Auneau F, Noël S, Aubert G, Besson M, Djakovitch L, Pinel C (2011) Catal Commun 16:144–149

    Article  CAS  Google Scholar 

  19. Auneau F, Arani L, Besson M, Djakovitch L, Michel C, Delbecq F, Sautet P, Pinel C (2012) Top Catal 55:474–479

    Article  CAS  Google Scholar 

  20. Roy D, Subramaniam B, Chaudhari RV (2011) ACS Catal 1:548–551

    Article  CAS  Google Scholar 

  21. Purushothaman RKP, van Haveren J, van Es DS, Melián-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100

    Article  CAS  Google Scholar 

  22. Xu J, Zhang H, Zhao Y, Yu B, Chen S, Li Y, Hao L, Liu Z (2013) Green Chem 15:1520–1525

    Article  CAS  Google Scholar 

  23. Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ (2011) Angew Chem Int Ed 50:10136–10139

    Article  CAS  Google Scholar 

  24. Tsuji A, Rao KTV, Nishimura S, Takagaki A, Ebitani K (2011) ChemSusChem 4:542–548

    Article  CAS  Google Scholar 

  25. Tongsakul D, Nishimura S, Ebitani K, ACS Catal (2013) 3:2199–2207

  26. Liang D, Gao J, Sun H, Chen P, Hou Z, Zheng X (2011) Appl Catal B 106:423–432

    Article  CAS  Google Scholar 

  27. Liang D, Gao J, Wang J, Chen P, Wei Y, Hou Z (2011) Catal Commun 12:1059–1062

    Article  CAS  Google Scholar 

  28. Villa A, Veith GM, Prati L (2010) Angew Chem. Int Ed 49:4499–4502

  29. Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:94–101

    Article  CAS  Google Scholar 

  30. West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) J Catal 269:122–130

    Article  CAS  Google Scholar 

  31. Pescarmona P, Janssen K, Stroobants C, Molle B, Paul J, Jacobs P, Sels B (2010) Top Catal 53:77–85

    Article  CAS  Google Scholar 

  32. Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels BF (2010) Green Chem 12:1083–1089

    Article  CAS  Google Scholar 

  33. Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Green Chem 13:1175

    Article  CAS  Google Scholar 

  34. Taarning E, Saravanamurugan S, Spangsberg Holm M, Xiong J, West RM, Christensen CH (2009) ChemSusChem 2:625–627

    Article  CAS  Google Scholar 

  35. Porta F, Prati L (2004) J Catal 224:397–403

    Article  CAS  Google Scholar 

  36. Ketchie W, Murayama M, Davis R (2007) Top Catal 44:307–317

    Article  CAS  Google Scholar 

  37. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131–136

    Article  CAS  Google Scholar 

  38. Wang H, Yu D, Sun P, Yan J, Wang Y, Huang H (2008) Catal Commun 9:1799–1803

    Article  CAS  Google Scholar 

  39. Sun P, Yu D, Fu K, Gu M, Wang Y, Huang H, Ying H (2009) Catal Commun 10:1345–1349

    Article  CAS  Google Scholar 

  40. Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581–586

    Article  CAS  Google Scholar 

  41. Manikyamba P (2003) React Kinet Catal Lett 78:169–173

    Article  CAS  Google Scholar 

  42. Watanabe M, Inomata H, Smith RL Jr, Arai K (2001) Appl Catal A 219:149–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NWO-ASPECT (The Netherlands) for financial support (ASPECT-project 053.62.020). Gert ten Brink and J. van der Velde (Faculty of Mathetatics and Natural science, University of Groningen) are acknowledged for the TEM and ICP-OES mesurements respectively. PQ-zeolyst is acknowledged for kindly supplying the commercial zeolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Heeres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purushothaman, R.K.P., van Haveren, J., Mayoral, A. et al. Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites. Top Catal 57, 1445–1453 (2014). https://doi.org/10.1007/s11244-014-0316-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0316-2

Keywords

Navigation