Topics in Catalysis

, Volume 57, Issue 17–20, pp 1407–1411 | Cite as

Intrinsic Kinetics of Ethanol Dehydration Over Lewis Acidic Ordered Mesoporous Silicate, Zr-KIT-6

  • Qing Pan
  • Anand Ramanathan
  • W. Kirk Snavely
  • Raghunath V. Chaudhari
  • Bala Subramaniam
Original Paper

Abstract

Lewis acidic Zr-KIT-6 catalyst was tested for ethanol dehydration. Under the reaction conditions studied (T = 300–380 °C, P = 1 atm, Pethanol = 5 % in N2), Zr-KIT-6 materials showed high ethylene selectivity (~80 %) with stable activity (60 h). The activation energy for ethanol dehydration to ethylene, estimated from intrinsic rate constants normalized with respect to the Lewis acid sites, was approximately 79 ± 1 kJ/mol.

Keywords

Ethanol dehydration KIT-6 Zirconium Lewis acid Kinetics 

Notes

Acknowledgments

This research was supported in part with funds from the U. S. Department of Agriculture/National Institute of Food and Agriculture (USDA/NIFA) Award 2011-10006-30362.

References

  1. 1.
    Fan D, Dai DJ, Wu HS (2013) Materials 6:101CrossRefGoogle Scholar
  2. 2.
    Zhang M, Yu Y (2013) Ind Eng Chem Res 52:9505CrossRefGoogle Scholar
  3. 3.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  4. 4.
    Vijayalaxmi S, Appaiah KAA, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Appl Biochem Biotechnol 171:246CrossRefGoogle Scholar
  5. 5.
    I. Okajima and T. Sako (2014) J Biosci Bioeng 117:1Google Scholar
  6. 6.
    Takahara I, Saito M, Inaba M, Murata K (2005) Catal Lett 105:249CrossRefGoogle Scholar
  7. 7.
    Chen Y, Wu YL, Tao L, Dai B, Yang MD, Chen Z, Zhu XY (2010) J Ind Eng Chem 16:717CrossRefGoogle Scholar
  8. 8.
    Wu L, Shi X, Cui Q, Wang H, Huang H (2011) Front Chem Sci Eng 5:60CrossRefGoogle Scholar
  9. 9.
    Zhang X, Wang R, Yang X, Zhang F (2008) Microporous Mesoporous Mater 116:210CrossRefGoogle Scholar
  10. 10.
    Ouyang J, Kong FX, Su GD, Hu YC, Song QL (2009) Catal Lett 132:64CrossRefGoogle Scholar
  11. 11.
    Kruger JS, Nikolakis V, Vlachos DG (2012) Curr Opin Chem Eng 1:312CrossRefGoogle Scholar
  12. 12.
    Crisci AJ, Tucker MH, Lee M-Y, Jang SG, Dumesic JA, Scott SL (2011) Acs Catal 1:719CrossRefGoogle Scholar
  13. 13.
    Haishi T, Kasai K, Iwamoto M (2011) Chem Lett 40:614CrossRefGoogle Scholar
  14. 14.
    Luz G Jr, Lima S, Melo AR, Araujo A, Fernandes V Jr (2010) J Mater Sci 45:1117CrossRefGoogle Scholar
  15. 15.
    Pan Q, Ramanathan A, Snavely WK, Chaudhari RV, Subramaniam B (2013) Ind Eng Chem Res 52:15481CrossRefGoogle Scholar
  16. 16.
    Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U (2013) Microporous Mesoporous Mater 167:207CrossRefGoogle Scholar
  17. 17.
    Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) Colloids Surf A 190(190):261CrossRefGoogle Scholar
  18. 18.
    Bakoyannakis DN, Zamboulis D, Stalidis GA, Deliyanni EA (2001) J Chem Technol Biotechnol 76:1159CrossRefGoogle Scholar
  19. 19.
    Maihom T, Khongpracha P, Sirijaraensre J, Limtrakul J (2013) ChemPhysChem 14:101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qing Pan
    • 1
    • 2
  • Anand Ramanathan
    • 1
  • W. Kirk Snavely
    • 1
  • Raghunath V. Chaudhari
    • 1
    • 2
  • Bala Subramaniam
    • 1
    • 2
  1. 1.Center for Environmentally Beneficial CatalysisThe University of KansasLawrenceUSA
  2. 2.Department of Chemical and Petroleum EngineeringThe University of KansasLawrenceUSA

Personalised recommendations