Topics in Catalysis

, Volume 57, Issue 17–20, pp 1318–1324 | Cite as

The 2014 Murray Raney Award Lecture: Architecture and Preparation of Supported Nickel Catalysts

  • C. Martin Lok
Original Paper


The so-called method of sequential co-precipitation allows the production of Ni or Co catalysts varying in metal content, metal dispersion, structure and texture. In this method at first the metal is precipitated and subsequently the support precursor or “stabilizer”. Deposition–precipitation of base metals (Ni, Co, Cu) starting from metal ammine complexes yields highly dispersed metals, uniformly distributed across the carrier surface.


Nickel Cobalt Copper Sequential precipitation Deposition–precipitation Ligand evaporation 



Thanks to all colleagues and co-workers at Unilever Research Vlaardingen and Port Sunlight, Unichema, Crosfield, ICI and Johnson Matthey I worked with over the years, especially Dirk Verzijl, Jacob van Dijk, Wolfgang Geuking, Heike Ritter, John Casci and Bart Zwijnenburg. In addition, I would like to acknowledge the fruitful co-operation with Prof. David Jackson (University Glasgow), Prof. Jacob Moulijn (Delft University) and Prof. Roel Prins (Eidgenössische Technische Hochschule, Zürich). Patricia Kooyman, Delft University, kindly supplied the electron micrographs.


  1. 1.
    Schmidt SR (2010) Top Catal 53:1114CrossRefGoogle Scholar
  2. 2.
    Raney M (1925) US Patent 1,563,587Google Scholar
  3. 3.
    Raney M (1927) US Patent 1,628,190Google Scholar
  4. 4.
    Petró J (2001) In: Ford ME (ed) Catalysis of organic reactions. Marcel Dekker, New York 1Google Scholar
  5. 5.
    Yamauchi I (2007) In: Schmidt SR (ed) Catalysis of organic reactions. CRC, Boca Raton 155Google Scholar
  6. 6.
    Ostgard DJ (2009) In: Prunier ML (ed) Catalysis of organic reactions. CRC, Boca Raton 497Google Scholar
  7. 7.
    Normann W (1902) German Patent 141,029 to Leprince & SivekeGoogle Scholar
  8. 8.
    Ellis C (1914) The hydrogenation of oils, catalyzers and catalysis and the generation of hydrogen. D. van Nostrand Company, New YorkGoogle Scholar
  9. 9.
    Lok CM (1992) US Patent 5,112,792 to UnileverGoogle Scholar
  10. 10.
    Lok CM, Joosten RA (1991) Influence of catalyst structure on hardening of edible oils and fatty acids, Unichema International Technical Information Bulletin, based on oral presentation American Oil Chemists’ Society, ChicagoGoogle Scholar
  11. 11.
    van den Berg HJ, Derijck A, van Dijk PM, Lok CM, Oudejans JC (1992) US Patent 5,135,573 to UnileverGoogle Scholar
  12. 12.
    Koetsier WT, Zwijnenburg A (2011) Catal Today 163:10Google Scholar
  13. 13.
    Lok CM (2004) US Patent 6,673,743 to Johnson MattheyGoogle Scholar
  14. 14.
    Martell AE, Smith RM (1977) Critical stability constants, vol 3. Plenum, New YorkGoogle Scholar
  15. 15.
    Lok M (2009) Co-precipitation. In: de Jong KP (ed) Synthesis of solid catalysts (Chap. 7). Wiley-VCH Verlag GmbH & Co., KGaA, WeinheimGoogle Scholar
  16. 16.
    Coenen JWE (1979) Preparation of catalysts II. In: Delmon B, Grange P, Jacobs P, Poncelet G (eds) Scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam, p 89Google Scholar
  17. 17.
    Coenen JWE (1986) Ind Eng Chem Fundament 25:43CrossRefGoogle Scholar
  18. 18.
    Lok CM, Ganguli KL (1986) US Patent 4,591,579 to UnileverGoogle Scholar
  19. 19.
    Ganguli KL, Nootenboom P, Lok CM (1987) US Patent 4,657,889 to UnileverGoogle Scholar
  20. 20.
    Lok CM, Oudejans JC, Ritter H (1990) EP0354612 to UnileverGoogle Scholar
  21. 21.
    Lok CM, Ritter H (1992) EP0496448 to Unichema Chemie BVGoogle Scholar
  22. 22.
    Oudejans JC, Nootenboom P, Ganguli KL, Lok CM (1987) US Patent 4,683,088 to UnileverGoogle Scholar
  23. 23.
    Lok CM, West J (2010) US Patent 7,732,500 to Johnson MattheyGoogle Scholar
  24. 24.
    Wang W-J, Chen Y-W (1991) Appl Catal 77:223CrossRefGoogle Scholar
  25. 25.
    de Jong KP (2009) Deposition precipitation. In: de Jong KP (ed) Synthesis of solid catalysts (Chap. 6). Wiley-VCH Verlag GmbH & Co., KGaA, WeinheimCrossRefGoogle Scholar
  26. 26.
    Geus JW (1983) Preparation of catalysts III. In: Poncelet G, Grange P, Jacobs PA (eds) Scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam, p 1Google Scholar
  27. 27.
    Lok CM, Verzijl D, van Dijk J (1984) US Patent 4,490,480 to UnileverGoogle Scholar
  28. 28.
    Lok CM, Rogers SD, Gray G, Bailey S (2005) US Patent 6,846,772 to Johnson MattheyGoogle Scholar
  29. 29.
    Bonné RLC, Lok CM (1999) US Patent 5,874,381 to Joseph Crosfield & SonsGoogle Scholar
  30. 30.
    Lok CM (2004) Natural gas conversion VII. In: Bao X, Xu Y (eds) Studies in surface science and catalysis, vol 147. Elsevier, Amsterdam, p 283Google Scholar
  31. 31.
    Lok CM (2004) Prepr Pap -Am Chem Soc, Div Pet Chem 49:169Google Scholar
  32. 32.
    Lok CM, Gray G, Kelly GJ (2005) US Patent 6,927,190 to Johnson MattheyGoogle Scholar
  33. 33.
    Lok CM, Bailey S, Gray G (2003) US Patent 6,534,436 to ICIGoogle Scholar
  34. 34.
    Lok CM (2011) US Patent 7,939,699 to Johnson MattheyGoogle Scholar
  35. 35.
    Bezemer GL, Radstake PB, Koot V, de Jong KP, van Dillen AJ, Geus JW (2006) J Catal 237:291CrossRefGoogle Scholar
  36. 36.
    Lok CM, Turner J (2010) US Patent 7,655,593 to Johnson MattheyGoogle Scholar
  37. 37.
    Lok CM (2009) US Patent 7,560,413 to Johnson MattheyGoogle Scholar
  38. 38.
    Hu XD, Loi R, O’Brien RO (2009) US Patent 2,009,036,296 to Sud-ChemieGoogle Scholar
  39. 39.
    Lok CM, Bale S (2007) US Patent 2,007,270,514Google Scholar
  40. 40.
    Shido T, Lok CM, Prins R (1999) Top Catal 8:223CrossRefGoogle Scholar
  41. 41.
    Hoffer BW, van Langeveld AD, Janssens J-P, Bonné RLC, Lok CM, Moulijn JA (2000) J Catal 19:2432Google Scholar
  42. 42.
    Borisova MS, Dzis’ko VA, Simonova LG (1974) Kinet Catal 13:425Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.AvantiumAmsterdamThe Netherlands

Personalised recommendations