Topics in Catalysis

, Volume 57, Issue 14–16, pp 1138–1144 | Cite as

Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mo–V–Nb–Te–O Oxidation Catalyst Using High Temperature STEM Imaging

  • Douglas A. Blom
  • Thomas Vogt
  • Larry F. Allard
  • Douglas J. Buttrey
Original Paper


A Mo–V–Nb–Te–O oxidation catalyst has been imaged using scanning transmission electron microscopy at 780 K, which is slightly above its operating temperature. We observe a sublattice disordering of the corner-sharing octahedra forming the catalytic sites containing V5+ while the edge-sharing pentagonal bipyramidal {Nb(Mo5)} sublattice remains structurally more rigid and thereby maintains the overall structural integrity of the catalyst. Imaging the termination of the edges of the [001] basal zones at room temperature reveal a preference for presence of a closed network of secondary structural {Nb(Mo)5} units providing further evidence of the stability of this sublattice structure. We propose that sublattice disordering of catalytic sites enables structural flexibility to accommodate different oxidation states during multistep chemical reactions within a more rigid superstructure and presents a new paradigm for compositionally and structurally complex catalysts.


MoVNbTeO catalyst M1 phase Selective oxidation Ammoxidation Sublattice disorder Active site STEM imaging 



We thank the USC NanoCenter for financial support for beam time on the JEOL 2100 F and travel support to ORNL. We also thank A. F. Volpe Jr., C. G. Lugmair, and R. K. Grasselli for providing the M1 specimen used in this study. Microscopy research at the Oak Ridge National Laboratory was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program.


  1. 1.
    Grasselli R (2002) Top Catal 21:79CrossRefGoogle Scholar
  2. 2.
    Ushikubo T, Sawaki L, Inumaru K, Kobayakawa S (1995) United States Patent No. US5422328 and patents referred to thereinGoogle Scholar
  3. 3.
    Oshihara K, Hisano T, Ueda W (2001) Top Catal 15:153CrossRefGoogle Scholar
  4. 4.
    Guliants VV, Bhandari R, Hughett AR, Bhatt S, Schuler BD, Brongersma HH, Knoester A, Gaffney AM, Han S (2006) J Phys Chem B 110:6129CrossRefGoogle Scholar
  5. 5.
    Naraschewski FN, Jentys A, Lercher JA (2011) Top Catal 54:639CrossRefGoogle Scholar
  6. 6.
    Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2003) Top Catal 23:5CrossRefGoogle Scholar
  7. 7.
    Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A 270:121CrossRefGoogle Scholar
  8. 8.
    Korovchenko P, Shiju NR, Dozier AK, Graham UM, Guerrero-Pérez MO, Guliants VV (2008) Top Catal 50:43CrossRefGoogle Scholar
  9. 9.
    Deniau B, Bergeret G, Jouguet B, Dubois JL, Millet JMM (2008) Top Catal 50:33CrossRefGoogle Scholar
  10. 10.
    DeSanto P Jr, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF Jr, Toby BH, Vogt T (2003) Top Catal 23:23CrossRefGoogle Scholar
  11. 11.
    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Z Kristallogr 219:152Google Scholar
  12. 12.
    Li X, Buttrey DJ, Blom DA, Vogt T (2011) Top Catal 54:614CrossRefGoogle Scholar
  13. 13.
    Grasselli RK (2005) Catal Today 99:23CrossRefGoogle Scholar
  14. 14.
    Amakawa K, Kolen’ko YV, Villa A, Schuster ME, Csepei L-I, Weinberg G, Wrabetz S, d’Alnoncourt RN, Girdsdies F, Prati L, Schlögl R, Trunschke A (2013) ACS Catal 3:1103CrossRefGoogle Scholar
  15. 15.
    Hävecker M, Wrabetz S, Kröhnert J, Csepei L-I, d’Alnoncourt RN, Kolen’ko, Girdsdies F, Schlögl R, Trunschke A (2012) J Catal 285:48CrossRefGoogle Scholar
  16. 16.
    Zhang W, Trunschke A, Schlögl R, Su DS (2010) Angew Chem Int Ed 49:6084CrossRefGoogle Scholar
  17. 17.
    Blom DA, Li X, Mitra S, Vogt T, Buttrey DJ (2011) ChemCatChem 3:1028CrossRefGoogle Scholar
  18. 18.
    Grasselli RK, Lugmair CG, Volpe AF (2011) Top Catal 54:595CrossRefGoogle Scholar
  19. 19.
    Wachs IE, Jehng J, Ueda W (2005) J Phys Chem B 109:2275CrossRefGoogle Scholar
  20. 20.
    Schlögl R (2011) Top Catal 54:627CrossRefGoogle Scholar
  21. 21.
    Pyrz W, Blom DA, Vogt T, Buttrey DJ (2008) Angew Chem Int Ed 47:2788CrossRefGoogle Scholar
  22. 22.
    Pyrz W, Blom DA, Shiju NR, Guliants VV, Vogt T, Buttrey DJ (2008) J Phys Chem C 112:10043CrossRefGoogle Scholar
  23. 23.
    Blom DA (2012) Ultramicroscopy 112:69CrossRefGoogle Scholar
  24. 24.
    Blom, DA (2013) UnpublishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Douglas A. Blom
    • 1
  • Thomas Vogt
    • 1
  • Larry F. Allard
    • 2
  • Douglas J. Buttrey
    • 3
  1. 1.Department of Chemistry and Biochemistry and Nano CenterUniversity of South CarolinaColumbiaUSA
  2. 2.Materials Science & Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Center for Catalytic Science and Technology, Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations