Topics in Catalysis

, Volume 57, Issue 10–13, pp 1054–1065 | Cite as

Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands

  • M. J.-L. Tschan
  • O. Diebolt
  • P. W. N. M. van Leeuwen
Original Paper


Ruthenium nanoparticles (RuNPs) attracted much attention in the last decade because of their potential applications in catalytic hydrogenation and oxidation reactions. The broad spectrum of applications of ruthenium in catalysis, notably together with its relatively low price, renders RuNPs an attractive alternative to platinum or rhodium. Many different additives were reported for the stabilization of RuNPs, in particular polymers and ionic liquids. Lately, many reports showed the effectiveness of RuNPs stabilization by coordinating molecules commonly used in organometallic chemistry such as amines, thiols, and alcohols. Very recently, the type of stabilizers was extended to more sophisticated ligands such as phosphorus, nitrogen and carbon donor ligands. In this mini-review, we will present an overview of the various ligands used for RuNPs, with an emphasis on phosphine ligand effects on the morphology and catalytic activity in hydrogenation reactions. Appendix gives a tabular overview of the key features of the RuNPs reviewed.


Ruthenium nanoparticles Ligand effect Phosphines Hydrogenation 


  1. 1.
    Schmid G (2004) Cluster and colloids from theory to applications. Wiley, WeinheimGoogle Scholar
  2. 2.
    de Jongh GL (1994) Physics and chemistry of metal cluster compounds. Kluwer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Klabunde KJ, Cardenas-Trivino G (1996) Active metals: preparation, characterization, applications. Wiley, WeinheimGoogle Scholar
  4. 4.
    Feldheim DL, Foss CA (2002) Metal nanoparticles. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Astruc D (2008) Nanoparticles and catalysis. Wiley, New YorkGoogle Scholar
  6. 6.
    Schmid G, Chi L (1998) Adv Mater 10:515CrossRefGoogle Scholar
  7. 7.
    Schmid G, Baumle M, Geerkens M, Heim I, Osemann C, Samitowski T (1999) Chem Soc Rev 28:179CrossRefGoogle Scholar
  8. 8.
    Aiken JD III, Finke RG (1999) J Mol Catal 145:1CrossRefGoogle Scholar
  9. 9.
    Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757CrossRefGoogle Scholar
  10. 10.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893CrossRefGoogle Scholar
  11. 11.
    El-Sayed MA (2001) Acc Chem Res 34:257CrossRefGoogle Scholar
  12. 12.
    Katz E, Willner I (2004) Angew Chem Int Ed 43:6042CrossRefGoogle Scholar
  13. 13.
    Watzky MA, Finke RG (1997) J Am Chem Soc 119:10382CrossRefGoogle Scholar
  14. 14.
    Besson C, Finney EE, Finke RG (2005) J Am Chem Soc 127:8179CrossRefGoogle Scholar
  15. 15.
    Besson C, Finney EE, Finke RG (2005) Chem Mater 17:4925CrossRefGoogle Scholar
  16. 16.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025CrossRefGoogle Scholar
  17. 17.
    Lin Y, Finke RG (1994) J Am Chem Soc 116:8335CrossRefGoogle Scholar
  18. 18.
    Aiken JD III, Finke RG (1999) Chem Mater 1:139Google Scholar
  19. 19.
    Somorjaj GA, Borodko YG (2001) Catal Lett 76:1CrossRefGoogle Scholar
  20. 20.
    Bönneman H, Richards RM (2001) Eur J Inorg Chem 10:2445Google Scholar
  21. 21.
    Glanz J (1995) Science 269:1363CrossRefGoogle Scholar
  22. 22.
    Henglein A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
  23. 23.
    Caseri W (2000) Macromol Rapid Commun 21:705CrossRefGoogle Scholar
  24. 24.
    Schmid G, Simon U (2005) Chem Commun 6:697CrossRefGoogle Scholar
  25. 25.
    Schmid G (2001) Adv Eng Mater 3:737CrossRefGoogle Scholar
  26. 26.
    Alivisatos AP, Johnson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Nature 382:609CrossRefGoogle Scholar
  27. 27.
    Elghanian R, Strohoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078CrossRefGoogle Scholar
  28. 28.
    Ott LS, Finke RG (2007) Coord Chem Rev 251:1075–1100CrossRefGoogle Scholar
  29. 29.
    Gual A, Godard C, Castellón S, Curulla-Ferré D, Claver C (2012) Catal Today 183:154CrossRefGoogle Scholar
  30. 30.
    Amiens C, Chaudret B, Ciuculescu D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K (2013) N J Chem. doi:10.1039/C3NJ00650F Google Scholar
  31. 31.
    According to 2010 Strem Catalog, 5 g of PtCl2, RhCl3, RuCl3 (anhydrous, >99.9% purity) cost respectively 565€, 1488€ and 241€Google Scholar
  32. 32.
    Gual A, Godard C, Castellón S, Claver C (2010) Dalton Trans 39:11499CrossRefGoogle Scholar
  33. 33.
    Lara P, Philippot K, Chaudret B (2013) ChemCatChem 5:28CrossRefGoogle Scholar
  34. 34.
    Roucoux A, Nowicki A, Philippot K (2008) In: Astruc D (ed) Nanoparticles and Catalysis. Wiley, Weinheim, p 349Google Scholar
  35. 35.
    Lu F, Liu J, Xu J (2006) Adv Synth Catal 348:857CrossRefGoogle Scholar
  36. 36.
    Xiao CX, Cai ZP, Wang T, Kou Y, Yan N (2008) Angew Chem Int Ed 47:746CrossRefGoogle Scholar
  37. 37.
    Song L, Li X, Wang H, Wu H, Wu P (2009) Catal Lett 133:63CrossRefGoogle Scholar
  38. 38.
    Rossi LM, Machado G (2009) J Mol Catal 298:69CrossRefGoogle Scholar
  39. 39.
    Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Chem Mater 5:341CrossRefGoogle Scholar
  40. 40.
    Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584CrossRefGoogle Scholar
  41. 41.
    Spitaleri A, Pertici P, Scalera N, Vitulli G, Hoang M, Turney TW, Gleria M (2003) Inorg Chim Acta 352:61CrossRefGoogle Scholar
  42. 42.
    Silveira ET, Umpierre AP, Rossi LM, Machado G, Morais J, Soares GV, Baumvol IJR, Teixeira SR, Fichtner PFP, Dupont J (2004) Chem Eur J 10:3734CrossRefGoogle Scholar
  43. 43.
    Prechtl MHG, Scarlot M, Scholten JD, Machada G, Teixeira SR, Dupont J (2008) Inorg Chem 47:8995CrossRefGoogle Scholar
  44. 44.
    Nagahara H (1992) Rev J Surf Sci Technol Avant-Garde 30:951Google Scholar
  45. 45.
    Asahi Chemical Co. Japan, Kokai Tokkyo Koho 62-81332, 62-201830, 63-17834, 63-63627Google Scholar
  46. 46.
    Struijk J, Scholten JJF (1992) Appl Catal 82:277CrossRefGoogle Scholar
  47. 47.
    van der Steen PJ, Scholtend JJF (1990) Appl Catal 58:291CrossRefGoogle Scholar
  48. 48.
    Struijk J, Scholten JJF (1990) Appl Catal 62:151CrossRefGoogle Scholar
  49. 49.
    Soede M, van de Sandt EJAX, Makkee M, Scholten JJF (1993) Heterog Catal Fine Chem 78:345Google Scholar
  50. 50.
    Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardcare C, Janiak C (2010) Chem Eur J 16:3849CrossRefGoogle Scholar
  51. 51.
    Kurihara LK, Chow GM, Schoen PE (1995) Nanostruct Mater 5:607CrossRefGoogle Scholar
  52. 52.
    Nowicki A, Zhang Y, Léger B, Rolland JP, Bricout H, Monflier E, Roucoux A (2006) Chem Commun 3:296CrossRefGoogle Scholar
  53. 53.
    Chau NTT, Handjani S, Guegan JP, Guerrero M, Monflier E, Philippot K, Denicourt-Nowicki A, Roucoux A (2013) ChemCatChem 5:1497CrossRefGoogle Scholar
  54. 54.
    Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Adv Funct Mater 13:118CrossRefGoogle Scholar
  55. 55.
    Can H, Metin Ö (2012) Appl Catal 125:304CrossRefGoogle Scholar
  56. 56.
    Lee JY, Yang J, Deivaraj TC, Too HP (2003) J Colloid Interface Sci 268:77CrossRefGoogle Scholar
  57. 57.
    Jansat S, Picurelli D, Pelzer K, Philippot K, Gómez M, Muller G, Lecante P, Chaudret P (2006) N J Chem 30:115CrossRefGoogle Scholar
  58. 58.
    Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2008) Chem Commun 28:3296CrossRefGoogle Scholar
  59. 59.
    García-Antón J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 120:2104CrossRefGoogle Scholar
  60. 60.
    Novio F, Philippot K, Chaudret B (2010) Catal Lett 140:1 The same research group also published an interesting article with deeper surface characterizationCrossRefGoogle Scholar
  61. 61.
    González-Gálvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2010) ACS Catal 2:317CrossRefGoogle Scholar
  62. 62.
    Guerrero N, Roucoux A, Denicourt-Nowicki A, Bricout H, Monflier E, Collière V, Fajerwerg K, Philippot K (2012) Catal Today 183:34CrossRefGoogle Scholar
  63. 63.
    Debouttière PJ, Coppel Y, Denicourt-Nowicki A, Roucoux A, Chaudret B, Philippot K (2012) Eur J Inorg Chem 8:1229CrossRefGoogle Scholar
  64. 64.
    Escárcega-Bobadilla MV, Tortosa C, Teuma E, Pradel C, Orejón A, Gómez M, Masdeu-Bultó AM (2009) Catal Today 148:398CrossRefGoogle Scholar
  65. 65.
    Gual A, Axet MR, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillon S, Claver C (2008) Chem Commun 24:2759CrossRefGoogle Scholar
  66. 66.
    Gual A, Godard C, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillon S, Claver C (2009) ChemSusChem 2:769CrossRefGoogle Scholar
  67. 67.
    van Leeuwen PWNM, Roobeek CF, Wife RL, Frijns JHG (1986) J. Chem. Soc. Chem Commun 31Google Scholar
  68. 68.
    Borona E, Illas F, Corma A (2009) J Phys Chem 113:3750CrossRefGoogle Scholar
  69. 69.
    Bus E, Miller JT, van Bokhoven JA (2005) J Phys Chem 109:14581CrossRefGoogle Scholar
  70. 70.
    Mohr C, Hofmeister H, Radnik J, Claus P (2003) J Am Chem Soc 125:1905CrossRefGoogle Scholar
  71. 71.
    Rafter E, Gutmann T, Löw F, Buntkowsky G, Philippot K, Chaudret B, van Leeuwen PWNM (2013) Catal Sci Technol 3:595CrossRefGoogle Scholar
  72. 72.
    Bronger R, Le TD, Bastin S, García-Antón J, Citadelle C, Chaudret B, Lecante P, Igau A, Philippot K (2011) N J Chem 35:2653CrossRefGoogle Scholar
  73. 73.
    Chen W, Davies JR, Ghosh D, Tong MC, Konopelski JP, Chen S (2006) Chem Mater 18:5253CrossRefGoogle Scholar
  74. 74.
    Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Angew Chem Int Ed 123:12286CrossRefGoogle Scholar
  75. 75.
    González-Gálvez D, Lara P, Rivada-Wheeaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) Catal Sci Technol 3:99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. J.-L. Tschan
    • 1
  • O. Diebolt
    • 1
  • P. W. N. M. van Leeuwen
    • 1
  1. 1.Institute of Chemical Research of Catalonia (ICIQ)TarragonaSpain

Personalised recommendations