Topics in Catalysis

, Volume 57, Issue 10–13, pp 1032–1041 | Cite as

Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN

Original Paper

Abstract

Adsorption and catalytic activation of the molecular oxygen on the hexagonal boron nitride (h-BN) monolayer supported on Ni(111) and Cu(111) surfaces have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active on the transition metal support as a result of mixing of the metal d and h-BN π bands.

Keywords

Oxidation reactions Oxygen activation Oxygen adsorption Hexagonal boron nitride Nickel Copper 

Notes

Acknowledgments

This work was supported by Elements Science and Technology Project of Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) on “Nano-hybridized Precious metal-free Catalysts for Chemical Energy Conversion”. A part of this work was performed under a management of “Elements Strategy Initiative for Catalysts & Batteries (ESICB)” supported by MEXT program “Elements Strategy Initiative to Form Core Research Center” (since 2012). The computations were partly performed using the computer facilities of ESCIB, Kyoto and the Research Center for Computational Science, Okazaki, Japan.

References

  1. 1.
    Haruta M (2005) Nature 437:1098–1099CrossRefGoogle Scholar
  2. 2.
    Davis SE, Ide MS, Davis RJ (2013) Green Chem 15:17–45CrossRefGoogle Scholar
  3. 3.
    Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, BerlinGoogle Scholar
  4. 4.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  5. 5.
    Haruta M (1997) Catal Today 36:153–166CrossRefGoogle Scholar
  6. 6.
    Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981–984CrossRefGoogle Scholar
  7. 7.
    Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132–1135CrossRefGoogle Scholar
  8. 8.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375CrossRefGoogle Scholar
  9. 9.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings G (2002) Chem. Commun. 18:2058–2059CrossRefGoogle Scholar
  10. 10.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335CrossRefGoogle Scholar
  11. 11.
    Lyalin A, Taketsugu T (2009) J Phys Chem C 113:12930–12934CrossRefGoogle Scholar
  12. 12.
    Lyalin A, Taketsugu T (2010) J Phys Chem Lett 1:1752–1757CrossRefGoogle Scholar
  13. 13.
    Lyalin A, Nakayama A, Uosaki K, Taketsugu T (2013) Phys Chem Chem Phys 15:2809–2820CrossRefGoogle Scholar
  14. 14.
    Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) Nano Lett 10:5049–5055CrossRefGoogle Scholar
  15. 15.
    Azevedo S, Kaschny JR, de Castilho CM, de Brito Mota F (2009) Eur Phys J B 67:507–512CrossRefGoogle Scholar
  16. 16.
    Gao M, Lyalin A, Taketsugu T (2012) J Phys Chem C 116:9054–9062CrossRefGoogle Scholar
  17. 17.
    Gao M, Lyalin A, Taketsugu T (2013) Int J Quantum Chem 113:443–452CrossRefGoogle Scholar
  18. 18.
    Gao M, Lyalin A, Taketsugu T (2011) Catalysts 1:18–39CrossRefGoogle Scholar
  19. 19.
    Gao M, Lyalin A, Taketsugu T (2013) J Chem Phys 138:034701CrossRefGoogle Scholar
  20. 20.
    Wiberg N, Holleman AF, Wiberg E (eds.) (2001) Inorganic chemistry. Academic Press, San Diego, 2001Google Scholar
  21. 21.
    Häkkinen H, Landman U (2001) J Am Chem Soc 123:9704–9705CrossRefGoogle Scholar
  22. 22.
    Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437–10445CrossRefGoogle Scholar
  23. 23.
    Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300CrossRefGoogle Scholar
  24. 24.
    Yoon B, Häkkinen H, Landman U (2003) J Phys Chem A 107:4066–4071CrossRefGoogle Scholar
  25. 25.
    Coquet R, Howard KL, Willock DJ (2008) Chem Soc Rev 37:2046–2076CrossRefGoogle Scholar
  26. 26.
    Ding X, Li Z, Yang J, Hou JG, Zhu Q (2004) J Chem Phys 120:9594–9600CrossRefGoogle Scholar
  27. 27.
    Fernández E, Ordejón P, Balbás LC (2005) Chem Phys Lett 408:252–257CrossRefGoogle Scholar
  28. 28.
    Gómez Díaz J, Ding Y, Koitz R, Seitsonen AP, Iannuzzi M, Hutter J (2013) Theor Chem Acc 132:1350CrossRefGoogle Scholar
  29. 29.
    Lin Y, Connell JW (2012) Nanoscale 4:6908–6939CrossRefGoogle Scholar
  30. 30.
    Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Katsnelson MI, Eaves L, Morozov SV, Mayorov AS, Peres NMR, Castro Neto AH, Leist J, Geim AK, Ponomarenko LA, Novoselov KS (2012) Nano Lett 12:1707–1710CrossRefGoogle Scholar
  31. 31.
    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev B 51:4606–4613CrossRefGoogle Scholar
  32. 32.
    Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A (1997) Phys Rev Lett 79:4609–4612CrossRefGoogle Scholar
  33. 33.
    Preobrajenski AB, Vinogradov AS, Mårtensson N (2005) Surf Sci 582:21–30CrossRefGoogle Scholar
  34. 34.
    Preobrajenski AB, Vinogradov AS, Mårtensson N (2004) Phys Rev B 70:165404CrossRefGoogle Scholar
  35. 35.
    Preobrajenski AB, Krasnikov SA, Vinogradov AS, Ng ML, Käämbre T, Cafolla AA, Mårtensson N (2008) Phys Rev B 77:085421CrossRefGoogle Scholar
  36. 36.
    Laskowski R, Gallauner T, Blaha P, Schwarz K (2009) J Phys Condens Matter 21:104210CrossRefGoogle Scholar
  37. 37.
    Laskowski R, Blaha P, Schwarz K (2008) Phys Rev B 78:045409/1-10CrossRefGoogle Scholar
  38. 38.
    Grad GB, Blaha P, Schwarz K, Auwärter W, Greber T (2003) Phys Rev B 68:085404CrossRefGoogle Scholar
  39. 39.
    Huda MN, Kleinman L (2006) Phys Rev B 74:075418CrossRefGoogle Scholar
  40. 40.
    Brugger T, Günther S, Wang B, Dil JH, Bocquet M-L, Osterwalder J, Wintterlin J, Greber T (2009) Phys Rev B 79:045407CrossRefGoogle Scholar
  41. 41.
    Shimoyama I, Baba Y, Sekiguchi T, Nath K (2009) J Electron Spectrosc Relat Phenom 175:6–13CrossRefGoogle Scholar
  42. 42.
    Zhou Y, Zu X, Gao F (2011) Solid State Commun 151:883–886CrossRefGoogle Scholar
  43. 43.
    Wu Z, Cohen RE (2006) Phys Rev B 73:235116/1-6Google Scholar
  44. 44.
    Tran F, Laskowski R, Blaha P, Schwarz K (2007) Phys. Rev. B 75:115131CrossRefGoogle Scholar
  45. 45.
    Laskowski R, Blaha P (2010) Phys. Rev. B 81:075418CrossRefGoogle Scholar
  46. 46.
    Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys. Stat. Sol. (b) 215:809–817CrossRefGoogle Scholar
  47. 47.
    Junquera J, Paz O, Sánchez-Portal D, Artacho E (2001) Phys Rev B 64:235111/1-9CrossRefGoogle Scholar
  48. 48.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  49. 49.
    Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  50. 50.
    Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453–461CrossRefGoogle Scholar
  51. 51.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  52. 52.
    Sánchez-Portal D, Ordejón P, Canadell E (2004) Struct Bond 113:103–170CrossRefGoogle Scholar
  53. 53.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  54. 54.
    Yoo CS, Akella J, Cynn H, Nicol M (1997) Phys Rev. B 56:140–146CrossRefGoogle Scholar
  55. 55.
    Wyckoff RWG (1963) Crystal structures, vol 1. Wiley, New YorkGoogle Scholar
  56. 56.
    Straumanis ME, Yu LS (1969) Acta Crystallogr 25A:676–682CrossRefGoogle Scholar
  57. 57.
    Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New YorkGoogle Scholar
  58. 58.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  59. 59.
    Lyalin A, Taketsugu T (2010) J Phys Chem C 114:2484–2493CrossRefGoogle Scholar
  60. 60.
    Lyalin A, Taketsugu T (2011) Faraday Discuss 152:185–201CrossRefGoogle Scholar
  61. 61.
    Lyalin A, Solov’yov IA, Solov’yov AV, Greiner W (2003) Phys Rev A 67:063203CrossRefGoogle Scholar
  62. 62.
    Lyalin A, Solov’yov IA, Solov’yov AV, Greiner W (2007) Phys Rev A 75:053201CrossRefGoogle Scholar
  63. 63.
    Lyalin A, Solov’yov AV, Greiner W (2006) Phys Rev A 74:043201CrossRefGoogle Scholar
  64. 64.
    Connerade JP, Lyalin AG, Semaoune R, Semenov SK, Solov’yov AV (2011) J Phys B Mol Opt Phys 34:2505–2511CrossRefGoogle Scholar
  65. 65.
    Semenikhina VV, Lyalin A, Solov’yov AV, Greiner W (2008) JETP 106:678–689CrossRefGoogle Scholar
  66. 66.
    Che JG, Cheng H-P (2005) Phys Rev B 72:115436CrossRefGoogle Scholar
  67. 67.
    Rusz J, Preobrajenski AB, Ng ML, Vinogradov NA, Mårtensson N, Wessely O, Sanyal B, Eriksson O (2010) Phys Rev B 81:073402CrossRefGoogle Scholar
  68. 68.
    Oshima C, Itoh A, Rokuta E, Tanaka T, Yamashita K, Sakurai T (2000) Solid State Commun 116:37–40CrossRefGoogle Scholar
  69. 69.
    Zhang Y, Yang W (1998) Phys Rev Lett 80:890CrossRefGoogle Scholar
  70. 70.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  71. 71.
    Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen AP, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth JV, Auwärter W (2012) Nano Lett 12:5821–5828CrossRefGoogle Scholar
  72. 72.
    Oshima C, Nagashima A (1997) J Phys Condens Matter 9:1–20CrossRefGoogle Scholar
  73. 73.
    Muntwiler M, Auwärter W, Baumberger F, Hoesch M, Greber T, Osterwalder J (2001) Surf Sci 472:125–132CrossRefGoogle Scholar
  74. 74.
    Solozhenko V, Lazarenko A, Petitet J-P, Kanaev A (2001) J Phys Chem Solids 62:1331–1334CrossRefGoogle Scholar
  75. 75.
    Mittendorfer F, Eichler A, Hafner J (1999) Surf Sci 433–435:756–760CrossRefGoogle Scholar
  76. 76.
    Yeh C-H, Ho J–J (2012) ChemPhysChem 13:3194–3203CrossRefGoogle Scholar
  77. 77.
    Xu Y, Mavrikakis M (2001) Surf Sci 494:131–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan
  2. 2.Catalysis Research CenterHokkaido UniversitySapporoJapan
  3. 3.International Center for Materials Nanoarchitechtonics (WPI-MANA)National Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations