Topics in Catalysis

, Volume 56, Issue 1–8, pp 358–364 | Cite as

Overview: Status of the Microwave-Based Automotive Catalyst State Diagnosis

  • Ralf MoosEmail author
  • Gregor Beulertz
  • Sebastian Reiß
  • Gunter Hagen
  • Gerhard Fischerauer
  • Martin Votsmeier
  • Jürgen Gieshoff
Original Paper


The oxygen loading degree in TWCs, the amount of stored ammonia in SCR catalysts, the NOx loading degree in LNTs, or the soot loading of DPFs play a key role in automotive exhaust gas aftertreatment. Today’s methods determine the catalyst state indirectly. They utilize gas sensors installed up- or downstream of the catalysts and the catalyst state is inferred from the sensor signals. This overview reports on the status of an alternative approach based on the interaction of electromagnetic microwaves with the catalyst material. Since the catalyst state is strongly correlated with the electrical properties of the catalyst material itself, this concept shows a great potential.


Three-way catalyst (TWC) Diesel particulate filter (DPF) Selective catalytic reduction (SCR) Lean NOx trap (LNT) Lambda probe 



The authors are indebted to the German Research Foundation (DFG) for financial support under grant numbers MO 1060/6-2, MO 1060/13-1, FI 956/3-2, and FI 956/5-1.


  1. 1.
    Moos R (2010) Sensors 10:6773CrossRefGoogle Scholar
  2. 2.
    Moos R, Zimmermann C, Birkhofer T, Knezevic A, Plog C, Busch MR, Ried T (2008) SAE paper 2008-01-0447, doi:  10.4271/2008-01-0447
  3. 3.
    Reiß S, Wedemann M, Moos R, Rösch M (2009) Top Catal 52:1898CrossRefGoogle Scholar
  4. 4.
    Reiß S, Spörl M, Hagen G, Fischerauer G, Moos R (2011) IEEE Sens J 11:434–438CrossRefGoogle Scholar
  5. 5.
    Hagen G, Piontkowski A, Müller A, Brüggemann D, Moos R, IEEE SENSORS 2011 Conference, Limerick, 28–31 Oct 2011, doi:  10.1109/ICSENS.2011.6126979
  6. 6.
    Fischerauer G, Spörl M, Gollwitzer A, Wedemann M, Moos R (2008) Frequenz 62:180CrossRefGoogle Scholar
  7. 7.
    Fischerauer G, Spörl M, Reiß S, Moos R (2010) Tech Mess 77:419CrossRefGoogle Scholar
  8. 8.
    Matsumoto S (2004) Catal. Today 90:183CrossRefGoogle Scholar
  9. 9.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal. Today 77:419CrossRefGoogle Scholar
  10. 10.
    Riegel J, Neumann H, Wiedenmann H-M (2002) Solid Stat. Ionics 152–153:783CrossRefGoogle Scholar
  11. 11.
    Tuller HL, Nowick AS (1979) J Electrochem. Soc. 126:209CrossRefGoogle Scholar
  12. 12.
    Boaro M, Trovarelli A, Hwang J-H, Mason TO (2002) Solid Stat. Ionics 147:85CrossRefGoogle Scholar
  13. 13.
    Izu N, Itoh T, Shin W, Matsubara I, Murayama N (2008) Sens. Actuators B 130:466CrossRefGoogle Scholar
  14. 14.
    Möller R, Votsmeier M, Onder C, Guzzella L, Gieshoff J (2009) Appl. Catal. B Environ. 91:30CrossRefGoogle Scholar
  15. 15.
    Baunach T, Schänzlin K, Diehl L (2006) Sauberes Abgas durch Keramiksensoren. Physik J. 5(5):33–38Google Scholar
  16. 16.
    Reiß S, Direkte Zustandssensorik von Automobilabgaskatalysatoren (Direct diagnosis of automotive exhaust gas catalysts), Doctoral Thesis, Universität Bayreuth, Bayreuth, 2012, ISBN: 978-3-8440-0841-8Google Scholar
  17. 17.
    Reiß S, Wedemann M, Spörl M, Fischerauer G, Moos R (2011) Sens. Lett. 9:316–320CrossRefGoogle Scholar
  18. 18.
    Beulertz G, Votsmeier M, Herbst F, Moos R, Replacing the lambda probe by radio frequency-based in operando three-way catalyst oxygen loading detection, The 14th International Meeting on Chemical Sensors, IMCS 14, Nuremberg, 20–23 May 2012, doi:  10.5162/IMCS2012/P2.2.7
  19. 19.
    Beulertz G, Fritsch M, Fischerauer G, Herbst F, Gieshoff J, Votsmeier M, Hagen G, Moos R (2013, in press) Top Catal. doi: 10.1007/s11244-013-9987-3
  20. 20.
    Koebel M, Elsener M, Kleemann M (2000) Catal. Today 59:335CrossRefGoogle Scholar
  21. 21.
    Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl. Catal. B Environ. 66:208CrossRefGoogle Scholar
  22. 22.
    Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) Catal. Today 114:3CrossRefGoogle Scholar
  23. 23.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl. Catal. B Environ. 18:1CrossRefGoogle Scholar
  24. 24.
    Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B (2007) Appl. Catal. B Environ. 70:80CrossRefGoogle Scholar
  25. 25.
    Kröcher O, Elsener M (2008) Appl. Catal. B 75:215Google Scholar
  26. 26.
    Schuler A, Votsmeier M, Kiwic P, Gieshoff J, Hauptmann W, Drochner A, Vogel H (2009) Chem. Eng. J. 154:333CrossRefGoogle Scholar
  27. 27.
    Kubinski DJ, Visser JH (2008) Sens. Actuators B 130:425CrossRefGoogle Scholar
  28. 28.
    Simon U, Flesch U, Maunz W, Müller R, Plog C (1998) Micropor. Mesopor. Mater 21:111CrossRefGoogle Scholar
  29. 29.
    Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Chem Eng Technol 34:791CrossRefGoogle Scholar
  30. 30.
    Roy S, Baiker A (2009) Chem. Rev. 109:4054CrossRefGoogle Scholar
  31. 31.
    Groß A, Bishop SR, Yang DJ, Tuller HL, Moos R (2012) Solid Stat. Ionics 225:317–323CrossRefGoogle Scholar
  32. 32.
    Groß A, Beulertz G, Marr I, Kubinski DJ, Visser JH, Moos R (2012) Sensors 12:2831CrossRefGoogle Scholar
  33. 33.
    Moos R, Wedemann M, Spörl M, Reiß S, Fischerauer G (2009) Top Catal. 52:2035CrossRefGoogle Scholar
  34. 34.
    Fremerey P, Reiß S, Geupel A, Fischerauer G, Moos R (2011) Sensors 11:8261–8280CrossRefGoogle Scholar
  35. 35.
    Casapu M, Grunwaldt JD, Maciejewski M, Baiker A, Eckhoff S, Göbel U, Wittrock M (2007) J. Cat. 251:28CrossRefGoogle Scholar
  36. 36.
    Nagy LL, Eddy DS, O’Rourke MJ US Patent Specification US 4,477,771, 1984Google Scholar
  37. 37.
    Ochs T, Schittenhelm H, Genssle A, Kamp B (2010) SAE paper 2010-01-0307, doi:  10.4271/2010-01-0307
  38. 38.
    Hagen G, Feistkorn C, Wiegärtner S, Heinrich A, Brüggemann D, Moos R (2010) Sensors 10:1589CrossRefGoogle Scholar
  39. 39.
    Walton FB, Kempster RW US Patent Specification 5,157,340, 1992Google Scholar
  40. 40.
    Walton FB. US Patent Specification US 5,497,099, 1996Google Scholar
  41. 41.
    Knitt AA, DeCou MT US Patent Specification US 7,253,641, 2007Google Scholar
  42. 42.
    Walton FB US Patent Specification US 7,157,919, 2007Google Scholar
  43. 43.
    Kulkarni VP, Leustek ME, Michels SK, Nair RN, Snopko MA, Knitt AA US Patent 2012/0017570 A1, 2012Google Scholar
  44. 44.
    Gonze EV, Kirby KW, Phelps A, Gregoire DJ. US Patent 2010/0180577A1, 2010Google Scholar
  45. 45.
    Davenport DM, Lofgren J US Patent Application 2011/0074440A1, 2011Google Scholar
  46. 46.
    Bromberg L, Sappok A, Parker R, Koert P, Wong V US Patent Specification 7,679,374, 2010Google Scholar
  47. 47.
    Sappok A, Bromberg L, Parks J, Prikhodko V (2010) SAE paper 2010-01-2126, doi: 10.4271/2010-01-2126
  48. 48.
    Fischerauer G, Förster MR, Moos R (2010) Meas. Sci. Technol. 21:035108Google Scholar
  49. 49.
    Feulner M, Hagen G, Piontkowski A, Müller, A, Fischerauer G, Brüggemann D, Moos R (2013, in press) Top Catal. doi: 10.1007/s11244-013-0002-9
  50. 50.
    Hansson, J., Ingeström, V. (2012) A method for estimating soot load in a DPF using an RF-based sensor, Master Thesis, U of Linköping, Linköping Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ralf Moos
    • 1
    Email author
  • Gregor Beulertz
    • 1
  • Sebastian Reiß
    • 1
  • Gunter Hagen
    • 1
  • Gerhard Fischerauer
    • 1
  • Martin Votsmeier
    • 2
  • Jürgen Gieshoff
    • 2
  1. 1.Bayreuth Engine Research CenterBayreuthGermany
  2. 2.Umicore AG & Co. KGHanauGermany

Personalised recommendations