Topics in Catalysis

, Volume 56, Issue 1–8, pp 157–164 | Cite as

Promising Stability of Gold-Based Catalysts Prepared by Direct Anionic Exchange for DeNOx Applications in Lean Burn Conditions

  • D.-L. Nguyen
  • S. Umbarkar
  • M. K. Dongare
  • C. Lancelot
  • J.-S. Girardon
  • C. Dujardin
  • P. Granger
Original Paper

Abstract

Supported gold catalysts on γ-Al2O3 have been investigated in the catalytic reduction of NOx in simulated Diesel exhaust gas conditions. Different parameters have been examined essentially the mode of gold incorporation via classical deposition–precipitation and anionic exchange methods and the nature of the pre-activation thermal treatment. The resistance to thermal ageing under reactive conditions at 500 °C was found completely different with a significant rate enhancement on anionic-exchange samples. Further comparisons also show that the nature of the pre-activation thermal treatment influences the extent of surface reconstructions during thermal ageing with a detrimental effect of reductive pre-treatment on the catalytic performances.

Keywords

Au/Al2O3 catalyst Anionic-exchange Deposition–precipitation NOx abatement Selective catalytic reduction 

References

  1. 1.
    Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2005) J Catal 229:154–162CrossRefGoogle Scholar
  2. 2.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309CrossRefGoogle Scholar
  3. 3.
    Kantcheva M, Samarskaya O, Ilieva L, Pantaleo G, Venezia AM, Andreeva D (2009) Appl Catal B 88:113–126CrossRefGoogle Scholar
  4. 4.
    Thompson D (1999) Gold Bull. 32(1):12–19CrossRefGoogle Scholar
  5. 5.
    Qiu S, Ohnishi R, Ichikawa M (1994) J Phys Chem 98(11):2718–2721CrossRefGoogle Scholar
  6. 6.
    Ilieva L, Pantaleo G, Sobczak JW, Ivanov I, Venezia AM, Andreeva D (2007) Appl Catal B 76:107–114CrossRefGoogle Scholar
  7. 7.
    Ueda A, Oshima T, Haruta M (1997) Appl Catal B 12:81–93CrossRefGoogle Scholar
  8. 8.
    Mellor JR, Palazov AN, Grigorova BS, Greyling JF, Reddy K, Letsoala MP, Marsh JH (2002) Catal Today 72:145–156CrossRefGoogle Scholar
  9. 9.
    Zou X, Qi S, Suo Z, An L, Li F (2007) Catal. Commun. 8:784–788CrossRefGoogle Scholar
  10. 10.
    El-Moemen AA, Kucerova G, Behm RJ (2010) Appl Catal B 95:57–70CrossRefGoogle Scholar
  11. 11.
    Ueda T, Haruta M (1998) Appl Catal B 18:115–121CrossRefGoogle Scholar
  12. 12.
    Ivanova S, Petit C, Pitchon V (2004) Appl Catal A 267:191–201CrossRefGoogle Scholar
  13. 13.
    Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X (2011) Appl Catal B 102:190–200CrossRefGoogle Scholar
  14. 14.
    Oh HS, Yang JH, Costello CK, Wang YM, Bare SR, Kung HH, Kung MC (2002) J Catal 210:375–386CrossRefGoogle Scholar
  15. 15.
    Wang SP, Zhang TY, Wang XY, Zhang SM, Wang SR, Huang WP, Wu SH (2007) J. Mol. Catal. A 272:45–52CrossRefGoogle Scholar
  16. 16.
    Wang H, Zhu H, Qin Z, Liang F, Wang G, Wang J (2009) J Catal 264:154–162CrossRefGoogle Scholar
  17. 17.
    Kruse N, Chenakin S (2011) Appl Catal A 391:367–376CrossRefGoogle Scholar
  18. 18.
    Miquel P, Granger P, Jagtap N, Umbarkar S, Dongare MK, Dujardin C (2010) J. Mol. Catal. A 322:90–97CrossRefGoogle Scholar
  19. 19.
    Yoon DY, Park JH, Kang HC, Kim PS, Nam IS, Yeo GK, Kil JK, Cha MS (2011) Appl Catal B 101:275–282CrossRefGoogle Scholar
  20. 20.
    Burch R, Breen JP, Meunier FC (2002) Appl Catal B 39:283–303CrossRefGoogle Scholar
  21. 21.
    Parvulescu VI, Cojocaru B, Parvulescu V, Richards R, Li Z, Cadigan C, Granger P, Miquel P, Hardacre C (2010) J Catal 272:92–100Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D.-L. Nguyen
    • 1
  • S. Umbarkar
    • 2
  • M. K. Dongare
    • 2
  • C. Lancelot
    • 1
  • J.-S. Girardon
    • 1
  • C. Dujardin
    • 1
  • P. Granger
    • 1
  1. 1.Université Lille Nord de France, CNRS UMR 8181Unité de Catalyse et de Chimie du Solide–UCCS, USTLVilleneuve d’AscqFrance
  2. 2.National Chemical LaboratoryPuneIndia

Personalised recommendations