Advertisement

Topics in Catalysis

, Volume 57, Issue 6–9, pp 561–571 | Cite as

Fischer–Tropsch Synthesis: Effect of K Loading on the Water–Gas Shift Reaction and Liquid Hydrocarbon Formation Rate over Precipitated Iron Catalysts

  • Wenping Ma
  • Gary Jacobs
  • Uschi M. Graham
  • Burtron H. Davis
Original Paper

Abstract

The effect of K loading on the water–gas shift (WGS) reaction and hydrocarbon formation rate during Fischer–Tropsch synthesis (FTS) was studied over 100 Fe/5.1 Si/2 Cu/x K (x = 1.25 or 3) precipitated catalysts using a 1-L continuously stirred tank reactor. The catalysts were tested over a wide range of experimental conditions: 260–270 °C, 1.3 MPa, H2/CO = 0.67 and 20–90 % CO conversions. On the low K loading (1.25 % K) Fe catalyst, the H2 deficiency required for the FTS reaction was made up by the WGS reaction only at high CO conversion level, i.e. >70 %; however, increasing potassium loading to 3 % dramatically improved the WGS reaction rate which provided enough hydrogen for the FTS reaction even at low CO conversion level, i.e. 30 %. Kinetic analysis suggests that increasing K loading resulted in significant increases in the WGS rate constant relative to that of FTS, which is a major cause of the high WGS activity on the high K loading catalyst. Both the low and high potassium containing iron catalysts have high liquid oil and solid wax formation rates, i.e. 0.78–0.93 g/g-cat/h at 260 °C, 1.3 MPa, H2/CO = 0.67 and 50 % CO conversion, but increasing potassium loading from 1.25 to 3 % shifted the primary product to wax (70 %) from oil (73.5 %). The wax fraction increased with increasing CO conversion for both iron catalysts. The effect of K loading on initial FTS activity and hydrocarbon distribution/selectivity of the Fe catalysts was also studied. High K loading, i.e. 3 % K, increased the iron carburization rate and significantly shortened the induction period of the FTS reaction. Secondary reactions of olefins were remarkably suppressed and the olefin content was greatly enhanced with increasing K loading from 1.25 to 3 %, consistent with a number of studies in the open literature.

Keywords

Fischer–Tropsch synthesis Water–gas shift Fe based catalyst Potassium promoter Carburization Reaction rate constant Hydrocarbon productivity 

Notes

Acknowledgments

This work was made possible by financial support from DOE grants (DE-AC22-99FT40540) and the Commonwealth of Kentucky.

References

  1. 1.
    Davis BH (1993, 1999, 2002, 2011) DOE final technical reportsGoogle Scholar
  2. 2.
    Bukur DB (1994, 1999, 2003) DOE final reportsGoogle Scholar
  3. 3.
    Huffman GP (2001, 2002, 2005) DOE final reportsGoogle Scholar
  4. 4.
    Bukur DB, Mukesh DS, Patal A (1990) Ind Eng Chem Res 29:194CrossRefGoogle Scholar
  5. 5.
    Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36CrossRefGoogle Scholar
  6. 6.
    Huo C, Wu B, Gao P, Yang Y, Li Y, Jiao H (2011) Angew Chem Int Ed 50:7403CrossRefGoogle Scholar
  7. 7.
    Yang Y, Xiang H, Xu Y, Bai L, Li Y (2004) Appl Catal 266:181CrossRefGoogle Scholar
  8. 8.
    Ma W, Kugler EL, Dadyburjor DB (2007) Energy Fuels 21:1832CrossRefGoogle Scholar
  9. 9.
    Lohitharn N, Goodwin JG Jr (2008) J Catal 260:7CrossRefGoogle Scholar
  10. 10.
    Kolbel H, Ralek M (1980) Catal Rev Sci Eng 21:225CrossRefGoogle Scholar
  11. 11.
    Li SZ, Li AW, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197CrossRefGoogle Scholar
  12. 12.
    O’Brien RJ, Davis BH (2004) Catal Lett 94:1CrossRefGoogle Scholar
  13. 13.
    Ma WP, Kugler EL, Dadyburjor DB (2011) Energy Fuels 25:1931CrossRefGoogle Scholar
  14. 14.
    Kolbel H, Ackermann P, Ruschenburg E, Langheim R, Engelhardt F (1951) Chem Ing Tech 23:153CrossRefGoogle Scholar
  15. 15.
    Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW (2008) J Mol Catal 283:33CrossRefGoogle Scholar
  16. 16.
    O’Brien RJ, Xu LG, Spicer RL, Davis BH (1996) Energy Fuels 10:921CrossRefGoogle Scholar
  17. 17.
    Luo MS, O’Brien RJ, Bao SQ, Davis BH (2003) Appl Catal 239:111CrossRefGoogle Scholar
  18. 18.
    Mansker LD, Jin YM, Bukur DB, Datye AK, Mansker LD et al (1999) Appl Catal 186:277CrossRefGoogle Scholar
  19. 19.
    Kolbel H (1960) Kalium als Strucktureller und Energetischer Promotor in isenkatalysatoren In: Actes du Deuxieme Congres Znternational de Catalyse. Technip: Paris, vol 11, pp 2075–2099Google Scholar
  20. 20.
    Kolbel H, Giehring H (1963) Brennstojj Chem 44:343Google Scholar
  21. 21.
    Ma WP, Ding YJ, Carreto Vázquez VC, Bukur DB (2004) Appl Catal 268:99CrossRefGoogle Scholar
  22. 22.
    Jacobs G, Sarkar A, Davis H, Cronauer D, Kropf AJ, Marshall CL (2009) In Advances in Fischer–Tropsch synthesis, catalysts, and catalysis, p 119Google Scholar
  23. 23.
    Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) J Phys Chem 114:7895Google Scholar
  24. 24.
    Bukur DB, Lang XS (1999) Ind Eng Chem Res 38:3270CrossRefGoogle Scholar
  25. 25.
    Zimmerman W, Bukur DB (1990) Can J Chem Eng 68:292CrossRefGoogle Scholar
  26. 26.
    Newsome DS (1980) Catal Rev Sci Eng 21:275CrossRefGoogle Scholar
  27. 27.
    Anderson RB (1984) The Fischer–Tropsch synthesis. Wiley, New York, pp 140–159Google Scholar
  28. 28.
    Yao Y (2011) Fischer–Tropsch synthesis using CO2 containing syngas mixtures over cobalt and iron based catalysts. PhD thesis, JohannesburgGoogle Scholar
  29. 29.
    Donnelly TJ, Yates IC, Satterfield CN (1989) Appl Catal 52:93CrossRefGoogle Scholar
  30. 30.
    Ji Y, Xiang H, Yang J, Xu Y, Li Y, Zhong B (2001) Appl Catal 214:77CrossRefGoogle Scholar
  31. 31.
    Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) J Catal 287:93CrossRefGoogle Scholar
  32. 32.
    Shi B, Davis BH (2004) Appl Catal 277:61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wenping Ma
    • 1
  • Gary Jacobs
    • 1
  • Uschi M. Graham
    • 1
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA

Personalised recommendations