Advertisement

Topics in Catalysis

, Volume 57, Issue 6–9, pp 526–537 | Cite as

Effect of Structural Promoters on Fe-Based Fischer–Tropsch Synthesis of Biomass Derived Syngas

  • Pratibha Sharma
  • Thomas Elder
  • Leslie H. Groom
  • James J. Spivey
Original Paper

Abstract

Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO2 concentrations are somewhat higher. Here, we report the use of Fe-based F–T catalysts for the conversion of syngas produced by the air-blown, atmospheric pressure gasification of southern pine wood chips. The syngas from the gasification step is compressed and cleaned in a series of sorbents to produce the following feed to the F–T step: 2.78 % CH4, 11 % CO2, 15.4 % H2, 21.3 % CO, and balance N2. The relatively high level of CO2 suggests the need to use catalysts that are active for CO2 hydrogenation as well is resistant to oxidation in presence of high levels of CO2. The work reported here focuses on the effect of these different structural promoters on iron-based F–T catalysts with the general formulas 100Fe/5Cu/4K/15Si, 100Fe/5Cu/4K/15Al and 100Fe/5Cu/4K/15Zn. Although the effect of Si, Al or Zn on iron-based F–T catalysts has been examined previously for CO+CO2 hydrogenation, we have found no direct comparison of these three structural promoters, nor any studies of these promoters for a syngas produced from biomass. Results show that catalysts promoted with Zn and Al have a higher extent of reduction and carburization in CO and higher amount of carbides and CO adsorption as compared to Fe/Cu/K/Si. This resulted in higher activity and selectivity to C5+ hydrocarbons than the catalyst promoted with silica.

Keywords

Biomass syngas Fischer–Tropsch synthesis Fe based catalysts Structural promoters 

Notes

Acknowledgments

This material is based upon work funded by the U.S. Department of Agriculture, under Award Number 11-DG-11221636-187. We thank Dr. Kerry Dooley at Louisiana State University for providing the adsorbents for gas clean up, Dr. Gary Jacobs at University of Kentucky for liquid sample analysis, Ms. Wanda LeBlanc at Louisiana State University for helping in getting the XRD data and Mr. Tom Beasley at Florida International University for the SEM experiments.

References

  1. 1.
    Demirbas A (2007) Prog Energy Combust Sci 33(1):1–18CrossRefGoogle Scholar
  2. 2.
    Ozcimen D, Karaosmanoglu F (2004) Renewable Energy 29:779–787CrossRefGoogle Scholar
  3. 3.
    Jefferson M (2006) Renewable Energy 31:571–582CrossRefGoogle Scholar
  4. 4.
    Hamelinck CN, Faaij A, den Uil H, Boerrigter H (2004) Energy 29(11):1743–1771CrossRefGoogle Scholar
  5. 5.
    Dasgupta D, Wiltowski T (2011) Fuel 90(1):174–181CrossRefGoogle Scholar
  6. 6.
    Davis BH (2001) Fuel Process Technol 71:157–166CrossRefGoogle Scholar
  7. 7.
    Schulz H, Schaub G, Claeys M, Riedel T (1999) Appl Catal A 186:215–227CrossRefGoogle Scholar
  8. 8.
    Riedel T, Claeys M, Schulz H, Schaub G, Nam S, Jun K, Choi M, Kishan G, Lee K (1999) Appl Catal A 186(1–2):201–213CrossRefGoogle Scholar
  9. 9.
    Jun KW, Roh HS, Kim KS, Ryu JS, Lee KW (2004) Appl Catal A 259(2):221–226CrossRefGoogle Scholar
  10. 10.
    Ubilla P, Garcia R, Fierro JLG, Escalona N (2010) J Chil Chem Soc 55(1):35–38CrossRefGoogle Scholar
  11. 11.
    Krishnamoorthy S, Li A, Iglesia E (2002) Catal Lett 80(1–2):77–86CrossRefGoogle Scholar
  12. 12.
    Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Biomass Bioenergy 23(2):129–152CrossRefGoogle Scholar
  13. 13.
    Boerrigter H, den Uil H, Calis HP (2003) Green diesel from biomass via Fischer–Tropsch synthesis. CPL Press, Newbury, pp 371–383Google Scholar
  14. 14.
    Prasad PSS, Bae JW, Jun K-W, Lee K-W (2008) Catal Surv Asia 12:170–183CrossRefGoogle Scholar
  15. 15.
    Yates IC, Satterfield CN (1989) Ind Eng Chem Res 28(1):9–12CrossRefGoogle Scholar
  16. 16.
    Chun D, Lee H-T, Yang J-I, Kim H-J, Yang J, Park J, Kim B-K, Jung H (2012) Catal Lett 142(4):452–459CrossRefGoogle Scholar
  17. 17.
    Bukur DB, Lang XS, Rossin JA, Zimmerman W, Rosynek M, Yeh EB, Li CP (1989) Ind Eng Chem Res 28:1130–1140CrossRefGoogle Scholar
  18. 18.
    Lohitharn N, Goodwin JG, Lotero E (2008) J Catal 255:104–113CrossRefGoogle Scholar
  19. 19.
    Elder T, Groom LH (2011) Biomass Bioenergy 35(8):3522–3528CrossRefGoogle Scholar
  20. 20.
    Vasireddy S, Campos A, Miamee E, Adeyiga A, Armstrong R, Allison JD, Spivey JJ (2010) Appl Catal A 372(2):184–190CrossRefGoogle Scholar
  21. 21.
    Lohitharn N, Goodwin JG, Lotero E (2008) J Catal 257:142–151CrossRefGoogle Scholar
  22. 22.
    Tavakoli A, Sohrabi M, Kargari A (2008) Chem Eng J 136(2–3):358–363CrossRefGoogle Scholar
  23. 23.
    Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Appl Catal. A 259:221–226Google Scholar
  24. 24.
    Dry ME (1981) Catalysis-Science and Technology. Springer-Verlag, New YorkGoogle Scholar
  25. 25.
    Sudsakorn K, Goodwin JG, Jothimurugesan K, Adeyiga AA (2001) Ind Eng Chem Res 40:4778–4784CrossRefGoogle Scholar
  26. 26.
    Bukur D, Koranne M, Lang X, Roa KRPM, Huffman GP (1995) Appl Catal A 126:85–113CrossRefGoogle Scholar
  27. 27.
    Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36–43CrossRefGoogle Scholar
  28. 28.
    Bukur DB, Lang X, Mukesh D, Zimmerman W, Rosynek M, Li C (1990) Ind Eng Chem Res 29:1588–1599CrossRefGoogle Scholar
  29. 29.
    Deckwer W, Lehmann HJ, Ralek M, Schmidt B (1981) Chem Ing Tech 53(10):818–819CrossRefGoogle Scholar
  30. 30.
    GPvd Laan, Beenackers AACM (1999) Catal Rev 41(3–4):255–318Google Scholar
  31. 31.
    Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Appl Catal A 311:66–75CrossRefGoogle Scholar
  32. 32.
    Nakhaei Pour A, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Appl Catal A 348(2):201–208CrossRefGoogle Scholar
  33. 33.
    Wan H-J, Wu B-S, An X, Li T-Z, Tao Z-C, Xiang H-W, Li U-W (2007) J Nat Gas Chem 16:130–138CrossRefGoogle Scholar
  34. 34.
    Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77(4):197–205CrossRefGoogle Scholar
  35. 35.
    Luo M, Davis BH (2013) Appl Catal A 246:171–181CrossRefGoogle Scholar
  36. 36.
    Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202–217CrossRefGoogle Scholar
  37. 37.
    Nakhaei Pour A, Housaindokht MR, Zarkesh J, Tayyari SF (2010) J Ind Eng Chem 16(6):1025–1032CrossRefGoogle Scholar
  38. 38.
    Farrauto RJ, Bartholomew CH (1997) Fundamentals and Practice. Chapman and Hall, LondonGoogle Scholar
  39. 39.
    Eliason SA, Bartholomew CH (1999) Appl Catal A 186(1–2):229–243CrossRefGoogle Scholar
  40. 40.
    Eliason SA, Bartholomew CH (1997) In: Studies in Surface Science and Catalysis Catalyst vol. 111 Deactivation. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Bartholomew CH (1991). In: Guczi L (ed) Studies in Surface Science and Catalysis, vol 64. Elsevier, Amsterdam pp 158–224Google Scholar
  42. 42.
    Amelse JA, Butt JB, Schwartz LH (1978) J Phys Chem 82:558CrossRefGoogle Scholar
  43. 43.
    Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243:199–211CrossRefGoogle Scholar
  44. 44.
    Xu J, Bartholomew CH (2005) J Phys Chem B 109:2392–2403CrossRefGoogle Scholar
  45. 45.
    Bartholomew CH (1982) Catal Rev 24(1):67CrossRefGoogle Scholar
  46. 46.
    Moon DW, Dwyer DJ, Bernasek SL (1985) Surf Sci 163:215–229CrossRefGoogle Scholar
  47. 47.
    Amenomiya Y, Pleizier G (1973) J Catal 28:442–454CrossRefGoogle Scholar
  48. 48.
    Cameron SD, Dwyer DJ (1988) Surf Sci 198:315–330CrossRefGoogle Scholar
  49. 49.
    Benziger J, Madix RJ (1980) Surf Sci 94:119–153CrossRefGoogle Scholar
  50. 50.
    Zhang C, Zhao G, Liu K, Yang Y, Xiang H, Li Y (2010) J Mol Catal A 328:35–43CrossRefGoogle Scholar
  51. 51.
    Zhang H, Ma H, Zhang H, Ying W, Fang D (2012) Catal Lett 142:131–137CrossRefGoogle Scholar
  52. 52.
    Cao D-B, Zhang F-Q, Li Y-W, Jiao H-J (2004) J Phys Chem B 108(26):9094–9104CrossRefGoogle Scholar
  53. 53.
    Lee J, Chern W, Lee M, Dong T (1992) Can J Chem Eng 70:511–515CrossRefGoogle Scholar
  54. 54.
    Fujimoto K, Shikada T (1987) Appl Catal 31:13–23CrossRefGoogle Scholar
  55. 55.
    Zhang C-H, Yang Y, Teng B-T, Li T-Z, Zheng H-Y, Xiang H-W, Li Y-W (2006) J Catal 237(2):405–415CrossRefGoogle Scholar
  56. 56.
    Wan H, Wu B, Zhang C, Xiang H, Li Y (2008) J Mol Catal A 283:33–42CrossRefGoogle Scholar
  57. 57.
    Yan S, Jun K, Hong J, Choi M, KW L (2000) Appl Catal A 194–195:63–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pratibha Sharma
    • 1
  • Thomas Elder
    • 2
  • Leslie H. Groom
    • 2
  • James J. Spivey
    • 1
  1. 1.Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.USDA Forest ServicePinevilleUSA

Personalised recommendations