Topics in Catalysis

, Volume 57, Issue 6–9, pp 445–450 | Cite as

Highly Selective and Active Niobia-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis

  • Jan H. den Otter
  • Krijn P. de JongEmail author
Original Paper


The performance of Co/Nb2O5 was compared to that of Co/γ-Al2O3 for the Fischer–Tropsch synthesis at 20 bar and over the temperature range of 220–260 °C. The C5+ selectivity of Nb2O5-supported cobalt catalysts was found to be very high, i.e. up to 90 wt% C5+ at 220 °C. The activity per unit weight cobalt was found to be similar for Nb2O5 and γ-Al2O3-supported catalysts at identical reaction temperature. However, due to the low porosity of crystalline Nb2O5, the cobalt loading was limited to 5 wt% and consequently the activity per unit weight of catalyst was lower than of Co/γ-Al2O3 catalysts with higher cobalt loadings. This low activity was largely compensated by increasing the reaction temperature, although the C5+ selectivity decreased upon increasing reaction temperature. Due to the high intrinsic C5+ selectivity, Nb2O5-supported catalysts could be operated up to ~250 °C at a target C5+ selectivity of 80 wt%, whereas γ-Al2O3-supported catalysts called for an operation temperature of ~210 °C. At this target C5+ selectivity, the activity per unit weight of catalyst was found to be identical for 5 wt% Co/Nb2O5 and 25 wt% Co/Al2O3, while the activity per unit weight of cobalt was a factor of four higher for the niobia-supported catalyst.


Fischer–Tropsch Niobia Selectivity Reaction temperature 



This research was financially supported by Companhia Brasileira de Metalurgia e Mineração—CBMM. The authors would like to thank Dr. Robson Monteiro and Mr. Rogério Ribas from CBMM for useful discussions and for supplying the niobia samples.

Supplementary material

11244_2013_200_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Iglesia E (1997) Appl Catal A 161:59–78CrossRefGoogle Scholar
  2. 2.
    Davis BH, Occelli ML (2007) Stud Surf Sci Catal 163:1–420CrossRefGoogle Scholar
  3. 3.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744CrossRefGoogle Scholar
  4. 4.
    Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  5. 5.
    Torres Galvis HM, Bitter JH, Khare CB et al (2012) Science 335:835–838CrossRefGoogle Scholar
  6. 6.
    Borg Ø, Eri S, Blekkan EA et al (2007) J Catal 248:89–100CrossRefGoogle Scholar
  7. 7.
    All S, Chen B, Goodwin J (1995) J Catal 157:35–41CrossRefGoogle Scholar
  8. 8.
    Dinse A, Aigner M, Ulbrich M et al (2012) J Catal 288:104–114CrossRefGoogle Scholar
  9. 9.
    den Breejen JP, Frey AM, Yang J et al (2011) Top Catal 54:768–777CrossRefGoogle Scholar
  10. 10.
    Morales Cano F, De Smit E, De Groot FMF et al (2007) J Catal 246:91–99CrossRefGoogle Scholar
  11. 11.
    Bezemer GL, Radstake PB, Falke U et al (2006) J Catal 237:152–161CrossRefGoogle Scholar
  12. 12.
    Morales Cano F, De Groot FMF, Gijzeman O et al (2005) J Catal 230:301–308CrossRefGoogle Scholar
  13. 13.
    Vannice M (1979) J Catal 56:236–248CrossRefGoogle Scholar
  14. 14.
    Ko E (1984) J Catal 86:315–327CrossRefGoogle Scholar
  15. 15.
    Iizuka T, Tanaka Y, Tanabe K (1982) J Mol Catal 17:381–389CrossRefGoogle Scholar
  16. 16.
    Frydman A, Castner DG, Campbell CT, Schmal M (1999) J Catal 188:1–13CrossRefGoogle Scholar
  17. 17.
    Soares RR, Frydman A, Schmal M (1993) Catal Today 16:361–370CrossRefGoogle Scholar
  18. 18.
    Silva RRCM, Schmal M, Frety R, Dalmon JA (1993) J Chem Soc Faraday Trans 89:3975–3980CrossRefGoogle Scholar
  19. 19.
    De Souza CD, Cesar DV, Marchetti SG, Schmal M (2007) Stud Surf Sci Catal 147:147–152CrossRefGoogle Scholar
  20. 20.
    Frydman A, Soares RR, Schmal M (1993) In: Proceedings of the 10th International Congress on Catalysis pp. 2797–2800Google Scholar
  21. 21.
    De Oliveira AK, Dos Santos BCA, Monteiro RDS et al (2005) WO 2005085390 A1Google Scholar
  22. 22.
    Chai S, Wang H-P, Liang Y, Xu B-Q (2007) J Catal 250:342–349CrossRefGoogle Scholar
  23. 23.
    Ahón VR, Lage PLC, De Souza CD et al (2006) J Nat Gas Chem 15:307–312CrossRefGoogle Scholar
  24. 24.
    Mendes FMT, Uhl A, Starr DE et al (2006) Catal Lett 111:35–1141CrossRefGoogle Scholar
  25. 25.
    Mendes FMT, Perez CAC, Noronha FB, Schmal M (2005) Catal Today 101:45–50CrossRefGoogle Scholar
  26. 26.
    Mendes FMT, Perez CAC, Noronha FB (2006) J Phys Chem B 110:9155–9163CrossRefGoogle Scholar
  27. 27.
    Noronha FB, Perez CA, Fre R (1999) Phys Chem Chem Phys 1:2861–2867CrossRefGoogle Scholar
  28. 28.
    Li Y, Fan Y, Yang H et al (2003) Chem Phys Lett 372:160–165CrossRefGoogle Scholar
  29. 29.
    Reuel RC (1984) J Catal 85:63–77CrossRefGoogle Scholar
  30. 30.
    Sexton B (1986) J Catal 97:390–406CrossRefGoogle Scholar
  31. 31.
    Jacobs G, Ji Y, Davis BH et al (2007) Appl Catal A 333:177–191CrossRefGoogle Scholar
  32. 32.
    Jacobs G, Das TK et al (2002) Appl Catal A 233:263–281CrossRefGoogle Scholar
  33. 33.
    Storsater S, Borg Ø, Blekkan EA, Holmen A (2005) J Catal 231:405–419CrossRefGoogle Scholar
  34. 34.
    Bukur DB, Pan Z, Ma W et al (2012) Catal Lett 142:1382–1387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations