Topics in Catalysis

, Volume 57, Issue 5, pp 392–400 | Cite as

Organic Solvent Tolerance of Retro-Friedel–Crafts Hydrolases

Original Paper

Abstract

Retro-Friedel–Crafts hydrolases are co-factor independent enzymes with unusual reactivity and selectivity. These unique hydrolases are scarcely studied for biocatalytical applications in organic chemistry yet, although many other hydrolytic enzymes (e.g. lipases) are commonly applied as catalysts. Two Friedel–Crafts hydrolases were selected, namely 2,6-diacetylphloroglucinol hydrolase (PhlG) from Pseudomonas fluorescens and phloretin hydrolase from Eubacterium ramulus (Phy), to test the suitability of these enzymes in synthetic applications. The activity and stability of PhlG and Phy as lyophilized cells or lyophilized crude extracts were investigated in the presence of organic co-solvents. It was shown, that by careful selection of the co-solvent the enzymes catalyse C–C hydrolysis in a buffer solvent mixture with improved conversions at 50 mM substrate concentration. However, attempts to catalyze C–C-bond formation in organic solvents were unsuccessful.

Keywords

C–C hydrolase Enzyme stability Solvent tolerance Retro-Friedel–Crafts acylation 

References

  1. 1.
    Drauz K, Gröger H, May O (eds) (2012) Enzyme catalysis in organic synthesis, 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Faber K (2011) Biotransformations in organic chemistry, 7th edn. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  3. 3.
    Bornscheuer UT, Kazlauskas RJ (2005) Hydrolases in organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Siirola E, Mutti FG, Grischek B, Hoefler SF, Fabian WMF, Grogan G, Kroutil W (2013) Adv Synth Catal 355:1703CrossRefGoogle Scholar
  5. 5.
    Hill CL, Verma CS, Grogan G (2007) Adv Synth Catal 349:916CrossRefGoogle Scholar
  6. 6.
    Hill CL, Hung LC, Smith DJ, Verma CS, Grogan G (2007) Adv Synth Catal 349:1353CrossRefGoogle Scholar
  7. 7.
    Sachelaru P, Schiltz E, Igloi GL, Brandsch R (2005) J Bacteriol 187:8516CrossRefGoogle Scholar
  8. 8.
    Siirola E, Frank A, Grogan G, Kroutil W (2013) Adv Synth Catal 355:1677CrossRefGoogle Scholar
  9. 9.
    Chatterjee AK, Gibbins LN (1969) J Bacteriol 100:594Google Scholar
  10. 10.
    Minamikawa T, Jayasankar NP, Bohm BA, Taylor IEP, Towers GHN (1970) Biochem J 116:889CrossRefGoogle Scholar
  11. 11.
    Schoefer L, Braune A, Blaut M (2004) Appl Environ Microbiol 70:6131CrossRefGoogle Scholar
  12. 12.
    Bottiglieri M, Keel C (2006) Appl Environ Microbiol 72:418CrossRefGoogle Scholar
  13. 13.
    He Y-X, Huang L, Xue Y, Fei X, Teng Y-B, Rubin-Pitel SB, Zhao H, Zhou C-Z (2010) J Biol Chem 285:4603CrossRefGoogle Scholar
  14. 14.
    Tsai H-F, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ (2001) J Biol Chem 276:29292CrossRefGoogle Scholar
  15. 15.
    Fujii I, Yasuoka Y, Tsai H-F, Chang YC, Kwon-Chung KJ, Ebizuka Y (2004) J Biol Chem 279:44613CrossRefGoogle Scholar
  16. 16.
    Schleberger C, Sachelaru P, Brandsch R, Schultz GE (2007) J Mol Biol 367:409CrossRefGoogle Scholar
  17. 17.
    Siirola E, Grischek B, Clay D, Frank A, Grogan G, Kroutil W (2011) Biotechnol Bioeng 108:2815CrossRefGoogle Scholar
  18. 18.
    Sato S, Kusakari T, Suda T, Kasai T, Kumazawa T, Onodera J, Obara H (2005) Tetrahedron 61:9630CrossRefGoogle Scholar
  19. 19.
    Frank A, Siirola E, Kroutil W, Grogan G (2013) Top Catal (in press)Google Scholar
  20. 20.
    Zaks A, Klibanov AM (1984) Science 224:1249CrossRefGoogle Scholar
  21. 21.
    Zaks A, Klibanov AM (1988) J Biol Chem 263:3194Google Scholar
  22. 22.
    Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Eur J Biochem 198:31CrossRefGoogle Scholar
  23. 23.
    Wessjohann LA, Keim J, Weigel B, Dippe M (2013) Curr Opin Chem Biol 17:229CrossRefGoogle Scholar
  24. 24.
    Hammer SC, Syrén P-O, Seitz M, Nestl BM, Hauer B (2013) Curr Opin Chem Biol 17:293CrossRefGoogle Scholar
  25. 25.
    Müller M, Sprenger GA, Pohl M (2013) Curr Opin Chem Biol 17:261CrossRefGoogle Scholar
  26. 26.
    Müller M (2012) Adv Synth Catal 354:3161CrossRefGoogle Scholar
  27. 27.
    Milner SE, Moody TS, Maguire AR (2012) Eur J Org Chem 2012:3059Google Scholar
  28. 28.
    Resch V, Schrittwieser JH, Siirola E, Kroutil W (2011) Curr Opin Biotechnol 22:793CrossRefGoogle Scholar
  29. 29.
    Brovetto M, Gamenara D, Saenz Méndez P, Seoane GA (2011) Chem Rev 111:4346CrossRefGoogle Scholar
  30. 30.
    Clapés P, Garrabou X (2011) Adv Synth Catal 353:2263CrossRefGoogle Scholar
  31. 31.
    Samland AK, Rale M, Spenger GA, Fessner W-D (2011) ChemBioChem 12:1454CrossRefGoogle Scholar
  32. 32.
    Müller M, Gocke D, Pohl M (2009) FEBS J 276:2894CrossRefGoogle Scholar
  33. 33.
    Sukumaran J, Hanefeld U (2005) Chem Soc Rev 34:530CrossRefGoogle Scholar
  34. 34.
    Phillips RS, Dua RK (1991) J Am Chem Soc 113:7385CrossRefGoogle Scholar
  35. 35.
    Li C, Hassler M, Bugg TDH (2008) ChemBioChem 9:71CrossRefGoogle Scholar
  36. 36.
    Müller H, Paul M, Hartmann D, Huch V, Blaesius D, Koeberle A, Werz O, Jauch J (2010) Angew Chem Int Ed 49:2045CrossRefGoogle Scholar
  37. 37.
    Jung DH, Lee YR, Kim SH (2010) Helv Chim Acta 93:635CrossRefGoogle Scholar
  38. 38.
    Wei G, Yu B (2008) Eur J Org Chem, 3156Google Scholar
  39. 39.
    Zheng S-Y, Li X-P, Tan H-S, Yu C-H, Zhang J-H, Shen Z-W (2013) Eur J Org Chem, 1356Google Scholar
  40. 40.
    Xu WF, Fang H, Li YL, Wang B (2012) Patent US2012/0121692Google Scholar
  41. 41.
    Arad D, Elias Y (1999) WO 99/30699Google Scholar
  42. 42.
    Coowar D, Couche E, Koncina E (2011) US2011/0144194Google Scholar
  43. 43.
    Brasca MG, Casale E, Ferguson R, Polucci P, Zuccotto F (2012) US20120046266A1Google Scholar
  44. 44.
    Martin R (2005) Handbook of hydroxyacetophenones. Springer, Berlin/HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Organic and Bioorganic ChemistryUniversity of GrazGrazAustria

Personalised recommendations