Skip to main content
Log in

Organic Solvent Tolerance of Retro-Friedel–Crafts Hydrolases

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Retro-Friedel–Crafts hydrolases are co-factor independent enzymes with unusual reactivity and selectivity. These unique hydrolases are scarcely studied for biocatalytical applications in organic chemistry yet, although many other hydrolytic enzymes (e.g. lipases) are commonly applied as catalysts. Two Friedel–Crafts hydrolases were selected, namely 2,6-diacetylphloroglucinol hydrolase (PhlG) from Pseudomonas fluorescens and phloretin hydrolase from Eubacterium ramulus (Phy), to test the suitability of these enzymes in synthetic applications. The activity and stability of PhlG and Phy as lyophilized cells or lyophilized crude extracts were investigated in the presence of organic co-solvents. It was shown, that by careful selection of the co-solvent the enzymes catalyse C–C hydrolysis in a buffer solvent mixture with improved conversions at 50 mM substrate concentration. However, attempts to catalyze C–C-bond formation in organic solvents were unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Drauz K, Gröger H, May O (eds) (2012) Enzyme catalysis in organic synthesis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Faber K (2011) Biotransformations in organic chemistry, 7th edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  3. Bornscheuer UT, Kazlauskas RJ (2005) Hydrolases in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Siirola E, Mutti FG, Grischek B, Hoefler SF, Fabian WMF, Grogan G, Kroutil W (2013) Adv Synth Catal 355:1703

    Article  CAS  Google Scholar 

  5. Hill CL, Verma CS, Grogan G (2007) Adv Synth Catal 349:916

    Article  CAS  Google Scholar 

  6. Hill CL, Hung LC, Smith DJ, Verma CS, Grogan G (2007) Adv Synth Catal 349:1353

    Article  CAS  Google Scholar 

  7. Sachelaru P, Schiltz E, Igloi GL, Brandsch R (2005) J Bacteriol 187:8516

    Article  CAS  Google Scholar 

  8. Siirola E, Frank A, Grogan G, Kroutil W (2013) Adv Synth Catal 355:1677

    Article  CAS  Google Scholar 

  9. Chatterjee AK, Gibbins LN (1969) J Bacteriol 100:594

    CAS  Google Scholar 

  10. Minamikawa T, Jayasankar NP, Bohm BA, Taylor IEP, Towers GHN (1970) Biochem J 116:889

    Article  CAS  Google Scholar 

  11. Schoefer L, Braune A, Blaut M (2004) Appl Environ Microbiol 70:6131

    Article  CAS  Google Scholar 

  12. Bottiglieri M, Keel C (2006) Appl Environ Microbiol 72:418

    Article  CAS  Google Scholar 

  13. He Y-X, Huang L, Xue Y, Fei X, Teng Y-B, Rubin-Pitel SB, Zhao H, Zhou C-Z (2010) J Biol Chem 285:4603

    Article  CAS  Google Scholar 

  14. Tsai H-F, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ (2001) J Biol Chem 276:29292

    Article  CAS  Google Scholar 

  15. Fujii I, Yasuoka Y, Tsai H-F, Chang YC, Kwon-Chung KJ, Ebizuka Y (2004) J Biol Chem 279:44613

    Article  CAS  Google Scholar 

  16. Schleberger C, Sachelaru P, Brandsch R, Schultz GE (2007) J Mol Biol 367:409

    Article  CAS  Google Scholar 

  17. Siirola E, Grischek B, Clay D, Frank A, Grogan G, Kroutil W (2011) Biotechnol Bioeng 108:2815

    Article  CAS  Google Scholar 

  18. Sato S, Kusakari T, Suda T, Kasai T, Kumazawa T, Onodera J, Obara H (2005) Tetrahedron 61:9630

    Article  CAS  Google Scholar 

  19. Frank A, Siirola E, Kroutil W, Grogan G (2013) Top Catal (in press)

  20. Zaks A, Klibanov AM (1984) Science 224:1249

    Article  CAS  Google Scholar 

  21. Zaks A, Klibanov AM (1988) J Biol Chem 263:3194

    CAS  Google Scholar 

  22. Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Eur J Biochem 198:31

    Article  CAS  Google Scholar 

  23. Wessjohann LA, Keim J, Weigel B, Dippe M (2013) Curr Opin Chem Biol 17:229

    Article  CAS  Google Scholar 

  24. Hammer SC, Syrén P-O, Seitz M, Nestl BM, Hauer B (2013) Curr Opin Chem Biol 17:293

    Article  CAS  Google Scholar 

  25. Müller M, Sprenger GA, Pohl M (2013) Curr Opin Chem Biol 17:261

    Article  Google Scholar 

  26. Müller M (2012) Adv Synth Catal 354:3161

    Article  Google Scholar 

  27. Milner SE, Moody TS, Maguire AR (2012) Eur J Org Chem 2012:3059

  28. Resch V, Schrittwieser JH, Siirola E, Kroutil W (2011) Curr Opin Biotechnol 22:793

    Article  Google Scholar 

  29. Brovetto M, Gamenara D, Saenz Méndez P, Seoane GA (2011) Chem Rev 111:4346

    Article  CAS  Google Scholar 

  30. Clapés P, Garrabou X (2011) Adv Synth Catal 353:2263

    Article  Google Scholar 

  31. Samland AK, Rale M, Spenger GA, Fessner W-D (2011) ChemBioChem 12:1454

    Article  CAS  Google Scholar 

  32. Müller M, Gocke D, Pohl M (2009) FEBS J 276:2894

    Article  Google Scholar 

  33. Sukumaran J, Hanefeld U (2005) Chem Soc Rev 34:530

    Article  CAS  Google Scholar 

  34. Phillips RS, Dua RK (1991) J Am Chem Soc 113:7385

    Article  CAS  Google Scholar 

  35. Li C, Hassler M, Bugg TDH (2008) ChemBioChem 9:71

    Article  CAS  Google Scholar 

  36. Müller H, Paul M, Hartmann D, Huch V, Blaesius D, Koeberle A, Werz O, Jauch J (2010) Angew Chem Int Ed 49:2045

    Article  Google Scholar 

  37. Jung DH, Lee YR, Kim SH (2010) Helv Chim Acta 93:635

    Article  CAS  Google Scholar 

  38. Wei G, Yu B (2008) Eur J Org Chem, 3156

  39. Zheng S-Y, Li X-P, Tan H-S, Yu C-H, Zhang J-H, Shen Z-W (2013) Eur J Org Chem, 1356

  40. Xu WF, Fang H, Li YL, Wang B (2012) Patent US2012/0121692

  41. Arad D, Elias Y (1999) WO 99/30699

  42. Coowar D, Couche E, Koncina E (2011) US2011/0144194

  43. Brasca MG, Casale E, Ferguson R, Polucci P, Zuccotto F (2012) US20120046266A1

  44. Martin R (2005) Handbook of hydroxyacetophenones. Springer, Berlin/Heidelberg

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. FP7-PEOPLE-ITN-2008-238531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kroutil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siirola, E., Kroutil, W. Organic Solvent Tolerance of Retro-Friedel–Crafts Hydrolases. Top Catal 57, 392–400 (2014). https://doi.org/10.1007/s11244-013-0193-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0193-0

Keywords

Navigation