Topics in Catalysis

, Volume 57, Issue 5, pp 366–375 | Cite as

Exploring the Substrate Specificity and Enantioselectivity of a Baeyer–Villiger Monooxygenase from Dietzia sp. D5: Oxidation of Sulfides and Aldehydes

  • Serena Bisagni
  • Benjamin Summers
  • Selin Kara
  • Rajni Hatti-Kaul
  • Gideon Grogan
  • Gashaw Mamo
  • Frank Hollmann
Original Paper

Abstract

Baeyer–Villiger monooxygenases (BVMOs) are valuable enzymes for specific oxyfunctionalization chemistry. They catalyze the oxidation of ketones to esters, but are also capable of oxidizing other chemical functions, namely aldehydes and heteroatoms such as sulfur, nitrogen, selenium and boron. The oxidation specificity and enantioselectivity of a newly characterized BVMO (BVMO4) from a strain of Dietzia towards sulfide- and aldehyde substrates have been studied. BVMO4 could react with sulfides containing an aromatic group. The presence of a substituent on the aromatic group was tolerated when they were in the meta- and para position and the oxidations yielded predominantly the (R)-sulfoxides. Similarly, BVMO4 displayed a higher activity for aldehydes containing a phenyl group, but long aliphatic aldehydes, namely octanal and decanal, were also accepted as substrate by this enzyme. The major oxidation products of the aldehyde substrates were the respective carboxylic acids in contrast to formate ester that was obtained in most of the previous reports. The Baeyer–Villiger oxidation of the substrate 2-phenylpropionaldehyde was studied in further detail and the corresponding acid product was obtained with good regio- and enantioselectivity. This is a unique feature for BVMO4 and is of great interest for further exploration of an alternative biocatalytic process.

Keywords

Baeyer–Villiger monooxygenase 2-Phenylpropionaldehyde Dietzia Profen Biocatalysis 

References

  1. 1.
    Leisch H, Morley K, Lau PCK (2011) Baeyer–Villiger monooxygenases: more than just green chemistry. Chem Revs 111(7):4165–4222CrossRefGoogle Scholar
  2. 2.
    de Gonzalo G, Mihovilovic MD, Fraaije MW (2010) Recent developments in the application of Baeyer–Villiger monooxygenases as biocatalysts. ChemBioChem 11(16):2208–2231CrossRefGoogle Scholar
  3. 3.
    Compounds Sop (2013) Patent US 20130017580 A1. http://www.google.com/patents/US20130017580. Accessed 20 May 2013
  4. 4.
    Patent WO 2008022627 A3 (2008) http://www.google.com/patents/WO200802267A3?cl=en. Accessed 20 May 2013
  5. 5.
    Rehdorf J, Mihovilovic MD, Bornscheuer UT (2010) Exploiting the regioselectivity of Baeyer–Villiger monooxygenases for the formation of β-amino acids and β-amino alcohols. Angew Chem Int Ed 49(26):4506–4508CrossRefGoogle Scholar
  6. 6.
    Bianchi DA, Moran-Ramallal R, Iqbal N, Rudroff F, Mihovilovic MD (2013) Enantiocomplementary access to carba-analogs of C-nucleoside derivatives by recombinant Baeyer–Villiger monooxygenases. Bioorg Med Chem Lett 23(9):2718–2720CrossRefGoogle Scholar
  7. 7.
    Torres Pazmiño DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW (2009) Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer–Villiger monooxygenases. ChemBioChem 10(16):2595–2598CrossRefGoogle Scholar
  8. 8.
    Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT (2008) Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBioChem 9(4):565–572CrossRefGoogle Scholar
  9. 9.
    de Gonzalo G, Ottolina G, Carrea G, Fraaije MW (2005) [Cp*Rh(bpy)(H2O)]2+ as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer-Villiger monooxygenases. Chem Comm 29:3724–3726CrossRefGoogle Scholar
  10. 10.
    Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JHL, Janssen DB (2005) Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining. Appl Microbiol and Biotechnol 66(4):393–400CrossRefGoogle Scholar
  11. 11.
    van Beek HL, Gd Gonzalo, Fraaije MW (2012) Blending Baeyer–Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties. Chem Comm 48(27):3288–3290CrossRefGoogle Scholar
  12. 12.
    Griffin M, Trudgill PW (1972) The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. Biochem J 129(3):595–603CrossRefGoogle Scholar
  13. 13.
    Branchaud BP, Walsh CT (1985) Functional group diversity in enzymic oxygenation reactions catalyzed by bacterial flavin-containing cyclohexanone oxygenase. J Am Chem Soc 107(7):2153–2161CrossRefGoogle Scholar
  14. 14.
    Brondani PB, de Gonzalo G, Fraaije MW, Andrade LH (2011) Selective oxidations of organoboron compounds catalyzed by Baeyer–Villiger monooxygenases. Adv Synth Catal 353(11–12):2169–2173CrossRefGoogle Scholar
  15. 15.
    Brondani PB, Guilmoto NMAF, Dudek HM, Fraaije MW, Andrade LH (2012) Chemoenzymatic approaches to obtain chiral-centered selenium compounds. Tetrahedron 68(51):10431–10436CrossRefGoogle Scholar
  16. 16.
    Zambianchi F, Pasta P, Carrea G, Colonna S, Gaggero N, Woodley JM (2002) Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer–Villiger and sulfide oxidations. Biotech and Bioeng 78(5):489–496CrossRefGoogle Scholar
  17. 17.
    de Gonzalo G, Pazmiño DET, Ottolina G, Fraaije MW, Carrea G (2005) Oxidations catalyzed by phenylacetone monooxygenase from Thermobifida fusca. Tetrahedron Asymmetry 16(18):3077–3083CrossRefGoogle Scholar
  18. 18.
    de Gonzalo G, Torres Pazmiño DE, Ottolina G, Fraaije MW, Carrea G (2006) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron Asymmetry 17(1):130–135CrossRefGoogle Scholar
  19. 19.
    Rodríguez C, de Gonzalo G, Fraaije MW, Gotor V (2007) Enzymatic kinetic resolution of racemic ketones catalyzed by Baeyer–Villiger monooxygenases. Tetrahedron Asymmetry 18(11):1338–1344CrossRefGoogle Scholar
  20. 20.
    Kamerbeek NM, Olsthoorn AJJ, Fraaije MW, Janssen DB (2003) Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl and Environ Microbiol 69(1):419–426CrossRefGoogle Scholar
  21. 21.
    Kourist R, Dominguez de Maria P, Miyamoto K (2011) Biocatalytic strategies for the asymmetric synthesis of profens: recent trends and developments. Green Chem 13(10):2607–2618CrossRefGoogle Scholar
  22. 22.
    Mustranta A (1992) Use of lipases in the resolution of racemic ibuprofen. Appl Microbiol and Biotechnol 38(1):61–66Google Scholar
  23. 23.
    Carvalho P, Contesini F, Bizaco R, Calafatti S, Macedo G (2006) Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. J Ind Microbiol Biotechnol 33(8):713–718CrossRefGoogle Scholar
  24. 24.
    Könst P, Merkens H, Kara S, Kochius S, Vogel A, Zuhse R, Holtmann D, Arends IWCE, Hollmann F (2012) Enantioselective oxidation of aldehydes catalyzed by alcohol dehydrogenase. Angew Chem Int Ed 51(39):9914–9917CrossRefGoogle Scholar
  25. 25.
    Friest JA, Maezato Y, Broussy S, Blum P, Berkowitz DB (2010) Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis: dynamic reductive kinetic resolution entry into (S)-profens. J Am Chem Soc 132(17):5930–5931CrossRefGoogle Scholar
  26. 26.
    Jensen CN, Cartwright J, Ward J, Hart S, Turkenburg JP, Ali ST, Allen MJ, Grogan G (2012) A flavoprotein monooxygenase that catalyses a Baeyer–Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor. ChemBioChem 13(6):872–878CrossRefGoogle Scholar
  27. 27.
    Fink MJ, Rial DV, Kapitanova P, Lengar A, Rehdorf J, Cheng Q, Rudroff F, Mihovilovic MD (2012) Quantitative comparison of chiral catalysts selectivity and performance: a generic concept illustrated with cyclododecanone monooxygenase as Baeyer–Villiger biocatalyst. Adv Synth Catal 354(18):3491–3500CrossRefGoogle Scholar
  28. 28.
    Fink MJ, Fischer TC, Rudroff F, Dudek H, Fraaije MW, Mihovilovic MD (2011) Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations. J Mol Cat B 73(1–4):9–16CrossRefGoogle Scholar
  29. 29.
    Szolkowy C, Eltis LD, Bruce NC, Grogan G (2009) Insights into sequence–activity relationships amongst Baeyer–Villiger monooxygenases as revealed by the intragenomic complement of enzymes from Rhodococcus jostii RHA1. ChemBioChem 10(7):1208–1217CrossRefGoogle Scholar
  30. 30.
    Carrea G, Redigolo B, Riva S, Colonna S, Gaggero N, Battistel E, Bianchi D (1992) Effects of substrate structure on the enantioselectivity and stereochemical course of sulfoxidation catalyzed by cyclohexanone monooxygenase. Tetrahedron Asymmetry 3(8):1063–1068CrossRefGoogle Scholar
  31. 31.
    Beecher J, Grogan G, Roberts S, Willetts A (1996) Enantioselective oxidations by the diketocamphane monooxygenase isozymes from Pseudomonas putida. Biotechnol Lett 18(5):571–576CrossRefGoogle Scholar
  32. 32.
    Kelly DR, Knowles CJ, Mahdi JG, Taylor IN, Wright MA (1996) The enantioselective oxidation of sulfides to sulfoxides with Acinetobacter sp. NCIMB 9871, Pseudomonas sp. NCIMB 9872, Xanthobacter autotrophicus DSM 431 (NCIMB 10811) and the black yeast NV-2. Tetrahedron Asymmetry 7(2):365–368CrossRefGoogle Scholar
  33. 33.
    Colonna S, Gaggero N, Pasta P, Ottolina G (1996) Enantioselective oxidation of sulfides to sulfoxides catalysed by bacterial cyclohexanone monooxygenases. Chem Commun 0(20):2303–2307CrossRefGoogle Scholar
  34. 34.
    Moonen MJH, Westphal AH, Rietjens IMCM, van Berkel WJH (2005) Enzymatic Baeyer–Villiger oxidation of benzaldehydes. Adv Synth Cat 347(7–8):1027–1034CrossRefGoogle Scholar
  35. 35.
    Zambianchi F, Pasta P, Ottolina G, Carrea G, Colonna S, Gaggero N, Ward JM (2000) Effect of substrate concentration on the enantioselectivity of cyclohexanone monooxygenase from Acinetobacter calcoaceticus and its rationalization. Tetrahedron Asymmetry 11(18):3653–3657CrossRefGoogle Scholar
  36. 36.
    Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, Jt Hove, Hennink WE, Crommelin DJA, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Serena Bisagni
    • 1
  • Benjamin Summers
    • 2
  • Selin Kara
    • 3
  • Rajni Hatti-Kaul
    • 1
  • Gideon Grogan
    • 2
  • Gashaw Mamo
    • 1
  • Frank Hollmann
    • 3
  1. 1.Department of Biotechnology, Center for Chemistry and Chemical EngineeringLund UniversityLundSweden
  2. 2.Department of ChemistryUniversity of YorkYorkUK
  3. 3.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations