Advertisement

Topics in Catalysis

, Volume 57, Issue 5, pp 356–365 | Cite as

Structures of Alcohol Dehydrogenases from Ralstonia and Sphingobium spp. Reveal the Molecular Basis for Their Recognition of ‘Bulky–Bulky’ Ketones

  • Henry Man
  • Kinga Kędziora
  • Justyna Kulig
  • Annika Frank
  • Iván Lavandera
  • Vicente Gotor-Fernández
  • Dörte Rother
  • Sam Hart
  • Johan P. Turkenburg
  • Gideon GroganEmail author
Original Paper

Abstract

Alcohol dehydrogenases (ADHs) are applied in industrial synthetic chemistry for the production of optically active secondary alcohols. However, the substrate spectrum of many ADHs is narrow, and few, for example, are suitable for the reduction of prochiral ketones in which the carbonyl group is bounded by two bulky and/or hydrophobic groups; so-called ‘bulky–bulky’ ketones. Recently two ADHs, RasADH from Ralstonia sp. DSM 6428, and SyADH from Sphingobium yanoikuyae DSM 6900, have been described, which are distinguished by their ability to accept bulky–bulky ketones as substrates. In order to examine the molecular basis of the recognition of these substrates the structures of the native and NADPH complex of RasADH, and the NADPH complex of SyADH have been determined and refined to resolutions of 1.5, 2.9 and 2.5 Å, respectively. The structures reveal hydrophobic active site tunnels near the surface of the enzymes that are well-suited to the recognition of large hydrophobic substrates, as determined by modelling of the bulky–bulky substrate n-pentyl phenyl ketone. The structures also reveal the bases for NADPH specificity and (S)-stereoselectivity in each of the biocatalysts for n-pentyl phenyl ketone and related substrates.

Keywords

Alcohol dehydrogenase Ketoreductase NADPH Oxidoreductase Enzyme structure 

Notes

Acknowledgments

This research was supported by a Marie Curie Network for Initial Training fellowships to K.K., J.K. and A.F. in the project BIOTRAINS (FP7-PEOPLE-ITN-2008-238531). We would also like to thank Prof. Wolfgang Kroutil of the University of Graz for genes encoding both RasADH and SyADH.

References

  1. 1.
    Atkin KE, Reiss R, Turner NJ, Brzozowski AM, Grogan G (2008) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger. Acta Crystallogr Sect F 64:182–185CrossRefGoogle Scholar
  2. 2.
    Bradshaw CW, Fu H, Shen GJ, Wong CH (1992) A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57:1526–1532CrossRefGoogle Scholar
  3. 3.
    Cuetos A, Rioz-Martínez A, Bisogno FR, Grischek B, Lavandera I, de Gonzalo G, Kroutil W, Gotor V (2012) Access to enantiopure α-alkyl-β-hydroxy esters through dynamic kinetic resolutions employing purified/overexpressed alcohol dehydrogenases. Adv Synth Catal 354:1743–1749CrossRefGoogle Scholar
  4. 4.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132CrossRefGoogle Scholar
  5. 5.
    Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr Sect D 62:72–82CrossRefGoogle Scholar
  6. 6.
    Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684CrossRefGoogle Scholar
  7. 7.
    Groman EV, Schultz RM, Engel LL, Orr JC (1976) Horse liver alcohol dehydrogenase and Pseudomonas testosteroni 3(17)β-hydroxysteroid dehydrogenase transfer epimeric hydrogens from NADH to 17β-hydroxy-5α-androstan-3-one. An exception to one of the Alworth–Bentley rules. Eur J Biochem 63:427–429CrossRefGoogle Scholar
  8. 8.
    Hollman F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13:2285–2313CrossRefGoogle Scholar
  9. 9.
    Höllrigl V, Hollmann F, Kleeb A, Buehler K, Schmid A (2008) TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Appl Microbiol Biotechnol 81:263–273CrossRefGoogle Scholar
  10. 10.
    Holm L, Sander C (1996) Mapping the protein Universe. Science 273:560–595CrossRefGoogle Scholar
  11. 11.
    Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Maria PD (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47:12230–12232CrossRefGoogle Scholar
  12. 12.
    Kabsch W (2010) XDS. Acta Crystallogr Sect D 66:125–132CrossRefGoogle Scholar
  13. 13.
    Karabec M, Lyskowski A, Tauber KC, Steinkellner G, Kroutil W, Grogan G, Gruber K (2010) Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem Commun 46:6314–6316CrossRefGoogle Scholar
  14. 14.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefGoogle Scholar
  15. 15.
    Kulig J, Simon RC, Rose CA, Husain SM, Hackh M, Ludeke S, Zeitler K, Kroutil W, Pohl M, Rother D (2012) Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases. Catal Sci Technol 2:1580–1589CrossRefGoogle Scholar
  16. 16.
    Kulig J, Frese A, Kroutil W, Pohl M, Rother D (2013) Biochemical characterization of an alcohol dehydrogenase from Ralstonia sp. Biotechnol Bioeng 110:1838–1848CrossRefGoogle Scholar
  17. 17.
    Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  18. 18.
    Lavandera I, Kern A, Ferreira-Silva B, Glieder A, de Wildeman S, Kroutil W (2008) Stereoselective bioreduction of bulky–bulky ketones by a novel ADH from Ralstonia sp. J Org Chem 73:6003–6005CrossRefGoogle Scholar
  19. 19.
    Lavandera I, Oberdorfer G, Gross J, de Wildeman S, Kroutil W (2008) Stereocomplementary asymmetric reduction of bulky–bulky ketones by biocatalytic hydrogen transfer. Eur J Org Chem 2008:2539–2543CrossRefGoogle Scholar
  20. 20.
    Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10:2155–2158CrossRefGoogle Scholar
  21. 21.
    Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular replacement pipeline. Acta Crystallogr Sect D 64:125–132CrossRefGoogle Scholar
  22. 22.
    Machielsen R, Uria AR, Kengen SWM, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238CrossRefGoogle Scholar
  23. 23.
    MacKenzie AK, Kershaw NJ, Hernandez H, Robinson CV, Schofield CJ, Andersson I (2007) Clavulanic acid dehydrogenase: structural and biochemical analysis of the final step in the biosynthesis of the β-lactamase inhibitor clavulanic acid. Biochemistry 46:1523–1533CrossRefGoogle Scholar
  24. 24.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D 53:240–255CrossRefGoogle Scholar
  25. 25.
    Musa MM, Phillips RS (2011) Recent advances in alcohol dehydrogenase-catalysed asymmetric production of hydrophobic alcohols. Catal Sci Technol 1:1311–1323CrossRefGoogle Scholar
  26. 26.
    Musa MM, Ziegelmann-Fjeld KI, Vieille C, Zeikus JG, Phillips RS (2010) In: Whittall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations. Wiley, Chichester, pp 284–287Google Scholar
  27. 27.
    Pennacchio A, Giordano A, Esposito L, Langella E, Rossi M, Raia CA (2010) Insight into the stereospecificity of short-chain Thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity. Protein Pept Lett 17:437–443CrossRefGoogle Scholar
  28. 28.
    Pennacchio A, Giordano A, Pucci B, Rossi M, Raia CA (2010) Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles 14:193–204CrossRefGoogle Scholar
  29. 29.
    Prelog V (1964) Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 9:119–130CrossRefGoogle Scholar
  30. 30.
    Ramaswamy S, Scholze M, Plapp BV (1997) Binding of formamides to liver alcohol dehydrogenases. Biochemistry 36:3522–3527CrossRefGoogle Scholar
  31. 31.
    Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349:801–813CrossRefGoogle Scholar
  32. 32.
    Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D 60:1355–1363CrossRefGoogle Scholar
  33. 33.
    Sogabe S, Yoshizumi A, Fukami TA, Shiratori Y, Shimizu S, Takagi H, Nakamori S, Wada M (2003) The crystal structure and stereospecificity of levodione reductase from Corynebacterium aquaticum M-13. J Biol Chem 278:19387–19395CrossRefGoogle Scholar
  34. 34.
    Supangat S, Seo KH, Choi YK, Park YS, Son D, Han C-D, Lee KH (2006) Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin. J Biol Chem 281:2249–2256CrossRefGoogle Scholar
  35. 35.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31:455–461Google Scholar
  36. 36.
    Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. Appl Crystallogr 30:1022–1025CrossRefGoogle Scholar
  37. 37.
    Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst 3:186–190CrossRefGoogle Scholar
  38. 38.
    You K-S (1984) Stereospecificity for nicotinamide nucleotides in enzymic and chemical hydride transfer reactions. Crit Rev Biochem 17:313–451CrossRefGoogle Scholar
  39. 39.
    Zelinski T, Kula M-R (1994) A kinetic study and application of a novel carbonyl reductase isolated from Rhodococcus erythropolis. Bioorg Med Chem 2:421–428CrossRefGoogle Scholar
  40. 40.
    Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z (2008) Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 17:412–1423Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Henry Man
    • 1
  • Kinga Kędziora
    • 2
  • Justyna Kulig
    • 3
  • Annika Frank
    • 1
  • Iván Lavandera
    • 2
  • Vicente Gotor-Fernández
    • 2
  • Dörte Rother
    • 3
  • Sam Hart
    • 1
  • Johan P. Turkenburg
    • 1
  • Gideon Grogan
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of YorkYorkUK
  2. 2.Facultad de Química, Química Orgánica e InorgánicaUniversidad de OviedoOviedoSpain
  3. 3.Institute of Bio- and Geosciences, IBG-1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations