Topics in Catalysis

, Volume 57, Issue 5, pp 284–300 | Cite as

Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines

  • Diego Ghislieri
  • Nicholas J. TurnerEmail author
Original Paper


Enantiomerically pure chiral amines are valuable building blocks for the synthesis of pharmaceutical drugs and agrochemicals. Indeed it is estimated that currently 40 % of pharmaceuticals contain a chiral amine component in their structure. Chiral amines are also widely used as resolving agents for diastereomeric salt crystallization. One of the challenges of preparing chiral amines in enantiomerically pure form is the development of cost-effective and sustainable catalytic methods that are able to address the requirement for the entire range of primary, secondary and tertiary amines. In this review we highlight various biocatalytic strategies that have been developed, particularly those based upon asymmetric synthesis or their equivalent therefore (i.e. dynamic kinetic resolution, deracemisation) in which yields and enantiomeric excesses approaching 100 % can be attained. Particular attention is given to the use of monoamine oxidase (MAO-N) from Aspergillus niger which has been engineered by directed evolution to provide a tool-box of variants which can generate enantiomerically pure primary, secondary and tertiary amines. These MAO-N variants are combined with non-selective chemical reducing agents in deracemisation processes.


Chiral amine Lipase Transaminase Amine dehydrogenase Monoamine oxidase Dynamic kinetic resolution Deracemisation Directed evolution 


  1. 1.
    Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Angew Chem Int Ed 43:788–824CrossRefGoogle Scholar
  2. 2.
    Turner NJ (2009) Nat Chem Biol 5:568–574CrossRefGoogle Scholar
  3. 3.
    Nugent TC, El-Shazly M (2010) Adv Synth Catal 352:753–819CrossRefGoogle Scholar
  4. 4.
    Storace L, Anzalone L, Confalone PN, Davis WP, Fortunak JM, Giangiordano M, Haley JJ, Kamholz K, Li HY, Ma P, Nugent WA, Parsons RL, Sheeran PJ, Silverman CE, Waltermire RE, Wood CC (2002) Org Process Res Dev 6:54–63CrossRefGoogle Scholar
  5. 5.
    Li C, Xiao J (2008) J Am Chem Soc 130:13208–13209CrossRefGoogle Scholar
  6. 6.
    Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917CrossRefGoogle Scholar
  7. 7.
    Roszkowski P, Maurin JK, Czarnocki Z (2006) Tetrahedron Asymmetry 17:1415–1419CrossRefGoogle Scholar
  8. 8.
    JS Wu, F Wang, YP Ma, XC Cui, LF Cun, J Zhu, JG Deng, BL Yu (2006) Chem Commun 1766–1768Google Scholar
  9. 9.
    Guan ZH, Huang K, Yu S, Zhang X (2009) Org Lett 11:481–483CrossRefGoogle Scholar
  10. 10.
    Liang C, Collet F, Robert-Peillard F, Müller P, Dodd RH, Dauban P (2008) J Am Chem Soc 130:343–350CrossRefGoogle Scholar
  11. 11.
    Crimmin MR, Arrowsmith M, Barrett AGM, Casely IJ, Hill MS, Procopiou PA (2009) J Am Chem Soc 131:9670–9685CrossRefGoogle Scholar
  12. 12.
    Reznichenko AL, Hultzsch KC (2010) Organometallics 29:24–27CrossRefGoogle Scholar
  13. 13.
    Weix DJ, Shi Y, Ellman JA (2005) J Am Chem Soc 127:1092–1093CrossRefGoogle Scholar
  14. 14.
    Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M (2011) Chem Rev 111:4141–4164CrossRefGoogle Scholar
  15. 15.
    Schmid A et al (2001) Nature 409:258–268CrossRefGoogle Scholar
  16. 16.
    Arnold FH (2001) Nature 409:253–257CrossRefGoogle Scholar
  17. 17.
    Schoemaker HE, Mink D, Wubbolts MG (2003) Science 299:1694–1697CrossRefGoogle Scholar
  18. 18.
    Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Nature 485:185–194CrossRefGoogle Scholar
  19. 19.
    Foulkes JM, Malone KJ, Coker VS, Turner NJ, Lloyd JR (2011) ACS Catal 1:1589–1594CrossRefGoogle Scholar
  20. 20.
    Ricca E, Brucher B, Schrittwieser JH (2011) Adv Synth Catal 353:2239–2262CrossRefGoogle Scholar
  21. 21.
    Balkenhohl F, Ditrich K, Hauer B, Ladner W (1997) J Prakt Chem 339:381–384CrossRefGoogle Scholar
  22. 22.
    Reetz MT, Schimossek K (1996) Chimia 50:668–669Google Scholar
  23. 23.
    Paetzold J, Backvall JE (2005) J Am Chem Soc 127:17620–17621CrossRefGoogle Scholar
  24. 24.
    Höhne M, Bornscheuer UT (2009) ChemCatChem 1:42–51CrossRefGoogle Scholar
  25. 25.
    Mathew S, Yun H (2012) ACS Catal 2:993–1001CrossRefGoogle Scholar
  26. 26.
    Matcham GW, Bowen ARS (1996) Chim Oggi 14:20–24Google Scholar
  27. 27.
    Shin JS, Kim BG, Liese A, Wandrey C (2001) Biotechnol Bioeng 73:179–187CrossRefGoogle Scholar
  28. 28.
    Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Science 329:305–309CrossRefGoogle Scholar
  29. 29.
    Simon RC, Grischek B, Zepeck F, Steinreiber A, Belaj F, Kroutil W (2012) Angew Chem Int Ed 51:6713–6716CrossRefGoogle Scholar
  30. 30.
    Desai AA (2011) Angew Chem Int Ed 50:1974–1976CrossRefGoogle Scholar
  31. 31.
    Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT (2010) Nat Chem Biol 6:807–813CrossRefGoogle Scholar
  32. 32.
    Mitsukura K, Suzuki M, Tada K, Yoshida T, Nagasawa T (2011) Org Biomol Chem 8:4533–4535CrossRefGoogle Scholar
  33. 33.
    Mitsukura K, Suzuki M, Shinoda S, Kuramoto T, Yoshida T, Nagasawa T (2011) Biosci Biotechnol Biochem 75:1778–1782CrossRefGoogle Scholar
  34. 34.
    Mitsukura K, Kuramoto T, Yoshida T, Kimoto N, Yamamoto H, Nagasawa T (2013) Appl Microbiol Biotechnol 18:8079–8086CrossRefGoogle Scholar
  35. 35.
    Leipold F, Hussain S, Ghislieri D, Turner NJ (2013) ChemCatChem. doi: 10.1002/cctc.201300539 Google Scholar
  36. 36.
    Rodriguez-Mata M, Frank A, Wells E, Leipold F, Turner NJ, Hart S, Turkenburg JP, Grogan G (2013) ChemBioChem 14:1372–1379CrossRefGoogle Scholar
  37. 37.
    Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K (2005) J Biol Chem 280:40875–40884CrossRefGoogle Scholar
  38. 38.
    Itoh N, Yachi C, Kudome T (2000) J Mol Catal B 10:281–290CrossRefGoogle Scholar
  39. 39.
    Abrahamson MJ, Vazquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Angew Chem Int Ed 51:3969–3972CrossRefGoogle Scholar
  40. 40.
    Edmondson DE, Binda C, Mattevi A (2007) Arch Biochem Biophys 464:269–276CrossRefGoogle Scholar
  41. 41.
    Fitzpatrick PF (2010) Arch Biochem Biophys 493:13–25CrossRefGoogle Scholar
  42. 42.
    Scrutton NS (2004) Nat Prod Rep 21:722–730CrossRefGoogle Scholar
  43. 43.
    Miller JR, Edmondson DE (1999) Biochemistry 38:13670–13683CrossRefGoogle Scholar
  44. 44.
    Reiss R (2008) PhD thesis. University of Manchester, ManchesterGoogle Scholar
  45. 45.
    Atkin KE, Reiss R, Koehler V, Bailey KR, Hart S, Turkenburg JP, Turner NJ, Brzozowski AM, Grogan G (2008) J Mol Biol 384:1218–1231CrossRefGoogle Scholar
  46. 46.
    Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) J Am Chem Soc 135:10863–10869CrossRefGoogle Scholar
  47. 47.
    Li M, Binda C, Mattevi A, Edmondson DE (2006) Biochemistry 45:4775–4784CrossRefGoogle Scholar
  48. 48.
    Rowles I, Malone KJ, Etchells LL, Willies SC, Turner NJ (2012) ChemCatChem 4:1259–1261CrossRefGoogle Scholar
  49. 49.
    Turner NJ (2011) Chem Rev 111:4073–4087CrossRefGoogle Scholar
  50. 50.
    Schilling B, Lerch K (1995) Mol Gen Genet 247:430–438CrossRefGoogle Scholar
  51. 51.
    Schilling B, Lerch K (1995) Biochim Biophys Acta 1243:529–537CrossRefGoogle Scholar
  52. 52.
    Sablin SO, Yankovskaya V, Bernard S, Cronin CN, Singer TP (1998) Eur J Biochem 253:270–279CrossRefGoogle Scholar
  53. 53.
    Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ (2002) Angew Chem Int Ed 41:3177–3180CrossRefGoogle Scholar
  54. 54.
    Carr R, Alexeeva M, Enright A, Eve TSC, Dawson MJ, Turner NJ (2003) Angew Chem Int Ed 42:4807–4810CrossRefGoogle Scholar
  55. 55.
    Carr R, Alexeeva M, Dawson MJ, Gotor-Fernandez V, Humphrey CE, Turner NJ (2005) ChemBioChem 6:637–639CrossRefGoogle Scholar
  56. 56.
    Dunsmore CJ, Carr R, Fleming T, Turner NJ (2006) J Am Chem Soc 128:2224–2225CrossRefGoogle Scholar
  57. 57.
    KR Bailey, AJ Ellis, R Reiss, TJ Snape, NJ Turner (2007) Chem Commun 3640–3642Google Scholar
  58. 58.
    Kohler V, Bailey KR, Znabet A, Raftery J, Helliwell M, Turner NJ (2010) Angew Chem Int Ed 49:2182–2184CrossRefGoogle Scholar
  59. 59.
    Znabet A, Polak MM, Janssen E, de Kanter FJJ, Turner NJ, Orru RVA, Ruijter E (2010) Chem Commun 46:7918–7920CrossRefGoogle Scholar
  60. 60.
    Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang X (2012) J Am Chem Soc 134:6467–6472CrossRefGoogle Scholar
  61. 61.
    Köhler V, Wilson YM, Dürrenberger M, Ghislieri D, Churakova E, Quinto T, Knörr L, Häussinger D, Hollmann F, Turner NJ, Ward TR (2013) Nat Chem 5:93–99CrossRefGoogle Scholar
  62. 62.
    O’Reilly E, Turner NJ (2013) Nat Chem Biol 9:285–288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Chemistry, Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK

Personalised recommendations