Topics in Catalysis

, Volume 57, Issue 1–4, pp 273–281 | Cite as

Catalytic Activity of Pt Nano-Particles for H2 Formation

  • Egill Skúlason
  • Avan A. Faraj
  • Lilja Kristinsdóttir
  • Javed Hussain
  • Anna L. Garden
  • Hannes JónssonEmail author
Original Paper


Associative desorption of hydrogen at edges and facets on Pt nano-particles (NPs) was studied using density functional theory. The goal was to identify catalytically active sites on Pt NPs for the hydrogen evolution reaction. Since NPs used in catalysis typically contain over a thousand atoms, calculations of whole particles are too demanding and the adsorption sites were instead modeled by periodic face centered cubic slabs representing an array of edges between two (111) micro-facets or edges between (111) and (100) micro-facets. The width of the facets in the periodic representations was systematically increased to reach converged results for binding and activation energy. For maximum hydrogen coverage, edges between (111) micro-facets were found to be several orders of magnitude more active than edges between (100) and (111) micro-facets or flat terraces. Unlike the missing row Pt(110)-(2 × 1) surface, which has sometimes been used as a simple model for edges between (111) micro-facets, the converged edge model does not show the recently reported reentrant behavior in desorption mechanism (Gudmundsdóttir et al., Phys Rev Lett 108:156101, 2012).


Nano-particles Hydrogen evolution Edges Density functional theory Minimum energy paths 



This work was funded in part by the Eimskip Fund of the University of Iceland, the Icelandic Research Fund and Nordic Energy Research by way of the Nordic Initiative for Solar Fuel Development. HJ acknowledges support from the Academy of Finland through the FiDiPro program. The calculations were in part carried out on the Nordic High Performance Computer (Gardar) located in Iceland.


  1. 1.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37CrossRefGoogle Scholar
  2. 2.
    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937CrossRefGoogle Scholar
  3. 3.
    Hvolbæk B, Janssens TVW, Clausen BC, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nano-particles. Nano Today 2:14CrossRefGoogle Scholar
  4. 4.
    Brodersen SH, Grønbjerg U, Hvolbæk B, Schiøtz J (2011) Understanding the catalytic activity of gold nano-particles through multi-scale simulations. J Catal 284:34CrossRefGoogle Scholar
  5. 5.
    Christman K, Ertl G (1976) Interaction of hydrogen with Pt(111): the role of atomic steps. Surf Sci 60:365CrossRefGoogle Scholar
  6. 6.
    Dahl S, Logadóttir A, Egeberg RC, Larsen JH, Chorkendorff I, Tørnqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814CrossRefGoogle Scholar
  7. 7.
    Brouzgoua A, Songb SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B 127:371CrossRefGoogle Scholar
  8. 8.
    Martin S, Martinez-Vazquez B, Garcia-Ybarra PL, Castillo JL (2013) Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. J Power Sourc 229:179CrossRefGoogle Scholar
  9. 9.
    Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231CrossRefGoogle Scholar
  10. 10.
    Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nano-particles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663CrossRefGoogle Scholar
  11. 11.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dulak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Finite size effects in chemical bonding: from small clusters to solids. Catal Lett 141:1067CrossRefGoogle Scholar
  12. 12.
    Gavnholt J, Schiøtz J (2008) Structure and reactivity of ruthenium nano-particles. Phys Rev B 77:035404CrossRefGoogle Scholar
  13. 13.
    Lu C, Masel R (2001) The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B 105:9793CrossRefGoogle Scholar
  14. 14.
    Cvetanovic R, Amenomiya Y (1967) In: Frankenberg W (ed) Advanes in catalysis, vol. 17. Academic Press 2 Inc., New YorkGoogle Scholar
  15. 15.
    Gudmundsdóttir S, Tang W, Henkelman G, Jónsson H, Skúlason E (2012) Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2) electrodes. J Chem Phys 137:164705CrossRefGoogle Scholar
  16. 16.
    Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241CrossRefGoogle Scholar
  17. 17.
    Rossmeisl J, Skúlason E, Björketun M, Tripkovic V, Nørskov J (2008) Modeling the electrified solidliquid interface. Chem Phys Lett 466:68CrossRefGoogle Scholar
  18. 18.
    Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182CrossRefGoogle Scholar
  19. 19.
    Tripkovic V, Björketun ME, Skúlason E, Rossmeisl J (2011) Standard hydrogen electrode and potential of zero charge in density functional calculations. Phys Rev B 84:115452CrossRefGoogle Scholar
  20. 20.
    Björketun ME, Tripkovic V, Skúlason E, Rossmeisl J (2013) Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catal Today 202:168CrossRefGoogle Scholar
  21. 21.
    Björketun ME, Zeng Z, Ahmed R, Tripkovic V, Thygesen KS, Rossmeisl J (2013) Avoiding pitfalls in the modeling of electrochemical interfaces. Chem Phys Lett 555:145CrossRefGoogle Scholar
  22. 22.
    Rossmeisl J, Chan K, Ahmed R, Tripkovic V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15:10321Google Scholar
  23. 23.
    Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99:126101CrossRefGoogle Scholar
  24. 24.
    Kohn W (1998) Nobel lecture: electronic structure of matter—wave functions and density functionals Rev Mod Phys 71:1253CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  26. 26.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 46:7413CrossRefGoogle Scholar
  27. 27.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892CrossRefGoogle Scholar
  28. 28.
    Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (ed) Classical and quantum dynamics in condensed phase simulations, World Scientific, Berkeley, pp 385Google Scholar
  29. 29.
    Henkelman G, Uberuaga B, Jónsson H (2000) A climbing-image NEB method for finding saddle points and minimum energy paths. J Chem Phys 113:9901CrossRefGoogle Scholar
  30. 30.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the NEB method for finding minimum energy paths and saddle points. J Chem Phys 113:9978CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Minca M, Deisl C, Loerting T, Menzel A, Bertel E (2004) H on Pt(110): an atypical chemisorption site at low coverages. Phys Rev B 70:121401CrossRefGoogle Scholar
  32. 32.
    Minca M, Penner S, Loerting T, Menzel A, Bertel E, Zucca R, Redinger J (2007) Chemisorption of hydrogen on the missing-row Pt(110)-(1 × 2) surface. Top Catal 46:161CrossRefGoogle Scholar
  33. 33.
    Gudmundsdóttir S, Skúlason E, Jónsson H (2012) Reentrant mechanism for associative desorption: H2/Pt(110)-(1 × 2). Phys Rev Lett 108:156101CrossRefGoogle Scholar
  34. 34.
    Gudmundsdóttir S, Skúlason E, Weststrate K-J, Juurlink L, Jónsson H (2013) Hydrogen adsorption and desorption at the Pt(110)-(1 × 2) surface: experimental and theoretical study. Phys Chem Chem Phys 15:6323CrossRefGoogle Scholar
  35. 35.
    Olsen RA, Badescu SC, Ying SC, Baerends EJ (2004) Adsorption and diffusion on a stepped surface: atomic hydrogen on Pt(211). J Chem Phys 120:11852CrossRefGoogle Scholar
  36. 36.
    Vehviläinen T, Salo P, Ala-Nissilä T, Ying SC (2009) Electronic properties of H on vicinal Pt surfaces: first-principles study. Phys Rev B 80:035403CrossRefGoogle Scholar
  37. 37.
    Gee AT, Hayden BE, Mormiche C, Nunney TS (2000) The role of steps in the dynamics of hydrogen dissociation on Pt(533). J Phys Chem 112:7660CrossRefGoogle Scholar
  38. 38.
    Engstrom JR, Tsai W, Weinberg WH (1987) The chemisorption of hydrogen on the (111) and (110)-(1 × 2) surfaces of iridium and platinum. J Chem Phys 87:3104CrossRefGoogle Scholar
  39. 39.
    Lerch D, Klein A, Schmidt A, Müller S, Hammer L, Heinz K, Weinert M (2006) Unusual adsorption site of hydrogen on the unreconstructed Ir(100) surface. Phys Rev B 73:075430CrossRefGoogle Scholar
  40. 40.
    Minca M, Penner S, Dona E, Menzel A, Bertel E, Brouet V, Redinger J (2007) Surface resonances on transition metals as low-dimensional model systems. New J Phys 9:386CrossRefGoogle Scholar
  41. 41.
    Johansson M, Skúlason E, Nielsen G, Murphy S, Nielsen RM, Chorkendorff I (2010) Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surf Sci 604:718CrossRefGoogle Scholar
  42. 42.
    Kristinsdóttir L, Skúlason E (2012) A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surf Sci 606:1400CrossRefGoogle Scholar
  43. 43.
    Kubas GJ (2001) Metal dihydrogen and σ-bond complexes: structure, theory, and reactivity. Springer, BoulderGoogle Scholar
  44. 44.
    Yang F, Zhang Q, Liu Y, Chen S (2011) A theoretical consideration on the surface structure and nano particle size effect of Pt in hydrogen electrocatalysis. J Phys Chem C 115:19311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Egill Skúlason
    • 1
    • 2
  • Avan A. Faraj
    • 1
  • Lilja Kristinsdóttir
    • 1
  • Javed Hussain
    • 1
  • Anna L. Garden
    • 1
  • Hannes Jónsson
    • 2
    • 3
    Email author
  1. 1.VR-IIIScience Institute of the University of IcelandReykjavíkIceland
  2. 2.Faculty of Physical Sciences, VR-IIIUniversity of IcelandReykjavíkIceland
  3. 3.Department of Applied PhysicsAalto UniversityEspooFinland

Personalised recommendations