Topics in Catalysis

, Volume 57, Issue 1–4, pp 265–272 | Cite as

Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

  • Ivano E. Castelli
  • Kristian S. Thygesen
  • Karsten W. Jacobsen
Original Paper


We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated and experimental Pourbaix diagrams for TiO2 and ZnO. For a class of 23 oxides, oxynitrides, and oxyfluorides, which were recently proposed as candidates for one-photon water splitting, our calculations predict most of the materials to be stable at potentials around the water red-ox level. The oxides become less stable at lower potentials, while the oxynitrides become unstable at higher potentials. We discuss the implications of these findings for the problem of photo-corrosion of water splitting electrodes.


Water splitting Density functional theory Pourbaix diagrams Corrosion Photo-corrosion 



The authors would like to thank Prof. Jan Rossmeisl for useful discussions. The authors acknowledge support from the Catalysis for Sustainable Energy (CASE) initiative funded by the Danish Ministry of Science, Technology and Innovation, and from the Center on Nanostructuring for the Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center founded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060


  1. 1.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Nat Mater 5(11):909. doi: 10.1038/nmat1752 CrossRefGoogle Scholar
  2. 2.
    Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) Nat Mater 12(3):191. doi: 10.1038/nmat3568 CrossRefGoogle Scholar
  3. 3.
    Johannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Phys Rev Lett 88(25):255506. doi: 10.1103/PhysRevLett.88.255506 CrossRefGoogle Scholar
  4. 4.
    Franceschetti A, Zunger A (1999) Nature 402:60. doi: 10.1038/46995 CrossRefGoogle Scholar
  5. 5.
    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Nature 392:694. doi: 10.1038/33647 CrossRefGoogle Scholar
  6. 6.
    Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) . ACS Comb Sci 13(4):382. doi: 10.1021/co200012w CrossRefGoogle Scholar
  7. 7.
    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) J Phys Chem Lett 2(17):2241. doi: 10.1021/jz200866s CrossRefGoogle Scholar
  8. 8.
    Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849. doi: 10.1039/C1EE02056K
  9. 9.
    O’Boyle NM, Campbell CM, Hutchison GR (2011) J Phys Chem C 115(32):16200. doi: 10.1021/jp202765c CrossRefGoogle Scholar
  10. 10.
    Armiento R, Kozinsky B, Fornari M, Ceder G (2011) Phys Rev B 84(1):014103. doi: 10.1103/PhysRevB.84.014103 Google Scholar
  11. 11.
    Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5:5814. doi: 10.1039/C1EE02717D
  12. 12.
    Castelli IE, Landis DD, Thygesen KS, Dahl S, Chorkendorff I, Jaramillo TF, Jacobsen KW (2012) Energy Environ Sci 5:9034.doi: 10.1039/C2EE22341D
  13. 13.
    Fujishima A, Honda K (1972) Nature 238(5358):37. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  14. 14.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440(7082):295. doi: 10.1038/440295a CrossRefGoogle Scholar
  15. 15.
    Yamasita D, Takata T, Hara M, Kondo J, Domen K (2004) Solid State Ion 172:591. doi: 10.1016/j.ssi.2004.04.033 CrossRefGoogle Scholar
  16. 16.
    Castelli IE, Thygesen KS, Jacobsen KW (2013) MRS online proceedings library 1523. doi: 10.1557/opl.2013.450.
  17. 17.
  18. 18.
    Materials Project: A Materials Genome Approach
  19. 19.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):35109. doi: 10.1103/PhysRevB.71.035109 CrossRefGoogle Scholar
  20. 20.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiotz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22(25):253202. doi: 10.1088/0953-8984/22/25/253202 CrossRefGoogle Scholar
  21. 21.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(1):7413. doi: 10.1103/PhysRevB.59.7413 CrossRefGoogle Scholar
  22. 22.
    Verink ED (2011) Simplified procedure for constructing Pourbaix diagrams. Wiley, Hoboken, p 93. doi: 10.1002/9780470872864.ch7
  23. 23.
    Johnson JW, Oelkers EH, Helgeson HC (1992) Comput Geosci 18(7):899. doi: 10.1016/0098-3004(92)90029-Q Google Scholar
  24. 24.
    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. No. v. 1 in Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, New YorkGoogle Scholar
  25. 25.
    Persson KA, Waldwick B, Lazic P, Ceder G (2012) Phys Rev B 85:235438 doi: 10.1103/PhysRevB.85.235438 Google Scholar
  26. 26.
    Dionigi F, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Energy Environ Sci 4:2937. doi: 10.1039/C1EE01242H
  27. 27.
    Dionigi F, Vesborg PC, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2012) J Catal 292:26. doi:  10.1016/j.jcat.2012.03.021
  28. 28.
    Connolly J (2005) Earth Planet Sci Lett 236(12):524. doi: 10.1016/j.epsl.2005.04.033 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ivano E. Castelli
    • 1
  • Kristian S. Thygesen
    • 1
  • Karsten W. Jacobsen
    • 1
  1. 1.Department of Physics, Center for Atomic-scale Materials DesignTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations